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Abstract — A study on the development of ucceleratinon equations for boundary cells and the associ-
ated boundary vonditions for the diffusion synthetic acceleration method of neutron transport prob-
lems in x-y geometry is described. Alcouffe’s algebraic monipulation of the P, equations resulting in
a single diffusion equation is modified 10 obtain explicir acceleration equations for the boundary cells.
To aecomplish this, the discretization in space is performed according to the ordinary bax-centered
method. The resulting synthetic compultation schente is linear in s differenced form. The boundary
cell difference equations ure derived in o manner that exactly parallels the discretization of rhe dif-
fusion equation for interior mesh cells and that of the transport equation, The imporiance of (hese
equations in improving overall efficiency without sacrificing stability is discussed, as is the oprintum
choice of the boundary conditions associared with these équations.

1. INTRODUCTION

The diffusion svnthetic acceleration (DSA) meth-
od'™® has been extensively used to accelerate the slow
convergence of the standard source iteration (SI)
method for discrete ordinates problems in optically
thick regions with scattering ratios ¢ necar unity. Sta-
bility difficulties of early versions of the DSA method
have heen resolved by Alcouffe* by altering the dif-
ferencing of the diffusion equation.

One important issue not discussed in the funda-
mental work of Alcouffe® is the problem of establish-
ing difference equations 1o accelerate the scalar flux at
the physical boundaries of the problem under con-
sideration. It is well known that to have an uncon-
ditionally stable iteration-acceleration scheme, the
differencing of the diffusion equation must preciscly
parallel the differencing of the transport equation. For
this reason, differenced acceleralion equations at the
boundary cells that possess this compatibility are very
important in preserving the efficiency of the DSA
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method without sacrificing stability. In the present
work, we derive acceleration equations for cells on the
problem boundary, called boundary acceleration equa-
tions, possessing a spatial discretization that is consis-
tent with the discretization of the diffusion equation.
We also find the optimum choice of boundary condi-
tions associated with these equations to improve the
efficiency of the acceleration scheme. Some progress
on this problem has been made by Larsen,” but the
success there is limited to problems in slab geometry.

The derivation of compatible differenced bound-
ary acceleration equations in x-y geometry turns out
1o be a nontrivial problem. As we demonstrale in
the present work, the standard difference form of the
two-dimensional DSA method® must be altered. The
spatial discretization is performed according to the
hox-centered difference scheme,” which is a natural
extension of the diamond-difference {(DD) approxi-
mation. We point out that the resulting acceleration
scheme is linear in its difference form. The reliability,
in general, of a linear acceleration technigue compared
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to a nonlinear one has been pointed out by Gelbard et
al..>* both for fixed-source® and cigenvalue” compu-
tanions,

The organization of this paper is as follows. In
Sec. 11, the development of the box-centered ditterence
transport and diffusion equations for iaterior mesh
points is given. The extension of this algebraic proce-
dure for boundary mesh points along with the deriva-
tion of certain boundary conditions is described in Sec.
I11. In Sec. 1V, numerical results are presented and,
finally, Sec. V contains a brief summary and conclu-
sions. It should be empbhasized that our analysis is
based on the DD transport eguation.

1. FORMULATION OF THE BOX-CENTERED
DIFFERENCE EQUATIONS

In this section, the differenced form of the trans-
port equation and the diffusion acceleration equation
for interior points is derived in x-y geomeiry. The
implemented spatial discretization scheme has been
introduced by Keller’ in the context of numerical
solutions of partial differential equations. It is well
known as the box method and is a simple extension of
the DD scheme.

Let us divide the rectangle x-y domain into cells as
seen in Fig. 1, with/=1,..., fandj=1,...,J The
cross sections o and o, are taken to be piecewise con-
stant and can change values only at the (half-integer)
cell boundaries. The standard DD discrete ordinates
equations with isotropic scattering and fixed sources
are

Rk (Wi = e i)
+ oy (Viitee = Yy a) + 0, V¥t
=0, v, -pw + V; Sy (1)
where
! = iteration index
s M = direction cosines with respect to x and v
axes
h,, k; = mesh spacings
Vi, = hk;

and the diamond equations

‘:‘f’.im_;' = (wm:}hz; + ﬂ‘rfmr—l.’zj)

(‘f-”mi,H vy + u"m;j—'/z) . (2)

b= D] =

The flux moments are calculated by the approximation

12 FERYY
‘pr:; = Z Wi Yrs {Pm , T}'m)me s 3
1w
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where

w,, = integration weight factors

Y,s{ttm,sn,n) = spherical harmonics.

Formulating the desired acceleration scheme, we
derive a set of synthetic equations by 1aking the zeroih
and the two first discrete moments (with respect 10 g
and n) of Eq. (1). To carry this out, Eq. (1} is multi-
plied successively by w,,, w,, 1., and u,,, M- Following
the procedure developed by Larsen,™® we define the
acceleration equations as

R i A B 07 AN 7 ra i
+ 0, Vi, fod) = o, Vi (e, ~ eoo,) . a)
Dy{fii). =gl )+ hfla, =0, (4b)
and
Dy( ({5,,1{ T 0';31 L)k fut,l =0, {4c)
where
D, =1/00,) ,
g, =0, = Py, »
and
,i+1 = t.-,'::rl - 'é"‘rs . (5

Equations (4) are a discretized form of the P, equa-
tions.

We now seek the form of a single difference
diffusion type equation. Alcouffe® presented an al-
gebraic procedure that allows the system of P ac-
celeration equacions to collapse down to a single
diffusion equation. Adding to Eq. (4a) the correspond-
ing equations for the adjacent cells (i + 1,7}, {47+ 1),
and (/ + 1,j + 1) and introducing to the resulting
equaiion the DD approximations for the first moments
Sio and fo,, we obtain
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Fig. 1. Cell-centered mesh in x-y geometry.
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i+ 41 1 1+1 r+1 41 +1
_2;'{),-)(10,1r + 2k, fio,,,, — 2k 008, + 2Kk, 00,0 — 2R 0el, — 2haater,,, 2RS0T+ 2, m,“,,]
I+1 : 41 1 - _
+ 6, V0ol + o, Vie i foon,, + 0n, Vi Joo,., Gr{+,f+1Vf+u+1fuu,+”+, = B tag4ra (6)

where
i+ j+1
Siargjp1n = Z E g pq('rt)ﬂ‘,_.; - @Uﬂpq) .
pe -_Jf

Then we substitute Eqgs. (4b) and (4¢) into Eq. (6) to find

E[Dj;' h_J (me,\,U _fUU,_.,”) - 1+ 1y ﬁ (fl)ﬂ;_'_yu - me 1,-U)f+] + ij+1 _;I—+ (fOUH. Lagd | _fUU,_»')H 1 ].H—l
! i f

k h;
J+1 {+1 i
_D.i+lj+l e (fDO,-*,,:,,l _f(J(),+l,,,+1) +D”— ()'m fDO,;_-,a)+]
hr+| k
h:+1 +1 h, !
+1
+ DH‘U ( fUUr+1;+ o f{l),_._“_ 1'1) - D”."“l k (fma,u—-l,: - fmg+"z)
,: 41
b h”’l f+1
- i1 1+ k (foor'+lj+3xp fmrll;+1 )
J+1
i+1 rd) {+1 —_
+ o, fO(I; + 0., Fes Uf U:+U + G’a_iul/f»""]ﬂ;a:;u + Jfa+1_;+lVf+ U*’ff‘J‘TrH_;H = Eittajats - (7)

Since this equation contains a lot of variables, Alcouffc approximated two adjacent ccll-edge fluxes with
an arithmetic average of the flux value at the intermediate cell vertex, e.g.,

Df;'kjfoo,,,.,,, + D+ k,:‘+1f00,,._,_,+1 = (Dyk; + Dyy ki) oo,

In addition, he introduced a nonlinear approximation on the removal term. However, although the implemen-
tation of these approximations leads to a tractable five-point diffusion equation, it does not allow the construc-
tion of compatible differenced boundary acceleration cquations.

To avoid this drawback, the scalar fluxes at intermediate mesh points and at mesh centers are eliminated,
according 1o the ordinary box-centered difterence method, by che use of

TR

1
Joo, ;= 5 (fmm,-w.,z + S, ) (8a)
1 .
Jo0,01y = 5 oty + So0in) (8b)
and
1
fmu = Z (fm:—"zj—vz +fmf Yl +f00H Vay vz +f00,-+uu. L,Z) s (8(:)

respectively. As a result, we obtain the following equation:

RSy + Sy F S VI — R S8, o (T, + T FELL L
+ (Q.-Jr + O!+l_,i + QIJHI + Q:+I_,r+l)f 00t vpypr- + {?;+I,.r + jr:~i—lu,i+l} H—,_j,_;,“n: - u+] !+!1 Ty
+ {Sje1 + Sr+l;+l)f0f;,—_‘ Yoyt ve R;+1j+1f00,-+|,,“,, = Bixvaj+r1a 9)
where
P and
(A, iy ] ki hYy )
— / o
Qi —D,;l—_ + k-) + g Vadi (10a) T =D,—J,—(——" + |+ = Vo, . (16d)
{ s h, k‘;‘ 4
k. kK 1 From the nine-point diffusion equation, Eq. (9),
R;= DU(—’ + —’) - = Vo, (10b) we can calculate the correction term fJUL e WE
Y 4 now complete the acceleration scheme by shlfnng the
. unknowns in Eq. (1) from cell-average and celi-edge
_pl&_ ﬂ Lo, angular fluxes to cell-vertex angular fluxes. Substitut-
Sy = Dy + — Vo o (10¢) ‘ A dlle . .
ik ing the box scheme approximations inlo Eq. (1} vields
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[ I+ 14
(zﬂmkj + an ha + aij V};)U'/;’;Ll;m 15 + (zﬂmkj - 2??;”}1:' + Ufjp:j)‘»’/m-‘;+z'/zj— 1z
1a 1z
+ (_'2ﬂmkj + 2nmb + O—J‘th})lX’;;rt—‘z}_H‘x: + (_z.umkj — 29,0, + U K;)'J/;:_rt— M=t
= 0y, Vi (#00,, vojurs T P00,_vsens ¥ P00ars, o1 T Plo_sn) + 4ViS (11)

which determines the corner angular fluxes only.
The acceleration scheme now consists of the
vertex-differenced transport and diffusion equations,
Egs. (11) and (9), respectively. The present approach
is characterized by the absence of any approximations
that destroy the consistency and the full compatibility
of the equations in their difference form. The synthetic
iteration process is linear and the nine-point diffusion
equation bas been derived in a way that exactly
parallels the differencing of the transport equation. In
Sec. i1, we use a similar procedure to give consistent
boundary equations for the discreticed diffusion equa-
tion, Eq. (9}, defined for interior mesh points only.

{11. FORMULATION OF THE DIFFERENCE
SCHEME AT THE BOUNDARIES

We now turn 1o the question of providing bound-
ary cell equations to the discretized diffusion eguation.
Eq. (9), defined for interior net points. It is obvious
that these equations associated with certain boundary
conditions will improve the ¢onvergence rate of the
acceleration scheme, and we accomplish this without
sacrificing stability. In this section, we first develop
consistent boundary conditions and then derive explicit
acceleration equations on fi3 ' at the boundary mesh
points.

1.4, Boundary Conditions

The objective is |o generate the diffusion bound-
ary conditions from the transport boundary condi-
tions,” and the guiding principle is the assumption
that the exact transport sglution is a lingar function
of u and 5. We first treal the left boundary, at x = x.,
and y = y,41,, = 0,1,...,J If there is a prescribed
incident flux, then we consider

iy i,n) = P001,,40, T 3000, ., T Invo Vagd b
(12a)

for0=pu=<1, —(1 —p ) =q=( —p®, and the
integral that defines the flux moments has been trans-
formed to the corresponding integral over a disk, If we
require the diffusion angular flux on this boundary
defined by

f+] I {41 . f+1
Vi (1) = @00, + 3peio,, . T 399010,

(12b)
to satisfy the same boundarv conditions as the trans-

port flux, then we obtain the fallowing condition on
the correction term:
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08,0 4 IS8 L, + 300, =0,
—(1 — )P =g = (1 - phH',
(13

which becomes exact on convergence. Multiplyving
Eq. (13) by (1727)(1 — 2 — )~ " w(x) and integrat-
imgover 0<p=land —(1 — ") <sy= (1 -pH)"
yields

O0=pu=1,

Al = eNEL L =00, (14)
where
| (1= p=t
f j wip)(l — u® — 97y 2 dndy
170 ey
N (1—u?)
3 | ll—pfl"’
[ ] wwa = = dnd
o 2.0
— (1=}
(15)
By setting w{p) = p" ', n =12,..., we find A =

{n 4+ 1)/3n, For a prescribed incident flux, including
the case of vacuum boundary conditions, any choice
of the function w(p) leading to a parameter A greater
than zero is physically justified, while for reflecting
boundary conditions A = 0. Finally, in the limit as
A — oo, the correction term f{3 ! becomes zero, which
corresponds to a DSA method without acceleration at
the boundaries. In Sec. IV, we present a detailed
experimental study on the effect of the parameter A.

Next, we treat the botiom boundary at x = x;, 1.,

i=0,1,...,I, and ¥y = v.,. For a prescribed incident
flux on this boundary, we find
(ﬁil,zbz + 3uf|‘|’{‘i£':': + 3nf(§?rl‘: [ = 0 ?
“l=p=<1l, 0=g=s(—-pH)"* . (16

Multiplying Eq. (16) by (1/2%){1 — 5~ — 12) " w(n)
and integrating over —l = p<landQ0 =<4 < (1l —
12)'*, we abtain the condition

EE N 7 RO X (F FODDY SR $¥)'
Following the same procedure, we find
A = —NE, s F=00,0 0 (18)
and
fl{tllx.r-o—l.': = }\féa—:-l—‘«z.-’+1': !

a1l the two remaining boundaries of the two-dimen-
sional grid.

i=01,...,71 (19)

OCT. 1988
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HI.B. Boundary Acceleration Equations

We now scek difference boundary equations, which
associated with Egs. (14), (17), (18), and (19) may vield
explicit acceleration equations on £{i! at the bound-
ary net points. A detailed derivation of these equations
is presented only at onc of the four boundaries and
also at one of the four corners. Similar analysis may
be carried out to deduce the remaining equations.

We choose the left boundary at x = x,, and v =
Voo d =100, — 1. Summing Eq. (4a) over two
boundary adjacent cells {1.7) and (1,j + 1} yields

k;{ff’c?ﬁ,, “_fl"g.}. ) + k;+1{f1f3:] _flff_;—a_]:H_‘)

VIR S|

i+1 .I’+l ]
(f D, — F0T, .) + UrUVUJ't‘m,,
i1 _
+ Ur[,”VI;’H.fml,—‘- “_glf'z_;'i-': b (20}
where
i+
_ ’ ] 7
i+ = E_GJH’,pIq(‘FUU]q “_‘POO]Q,) .
q=r

We introducce the DD approximation into Eq. (20) to
obtain

2[}{ (leI {[T]) +k;+1( m,“] fig! ,,.)
+ R (L -] + a, Vi fod,
+ Ur,}“l‘uufoobﬂ — By - n

Evaluating Eqs. (4bYand (dc)ati=landj=4 j+ 1
and sybstituting the resulting equations for Fro,
fioy,,.+ for,,» and fo,,, into Eq. (21} gives

Ay
[D]f t( (.f”l‘].r-{‘ f(m], |2)f+l - D'_.H'i ;:
X (-fﬂﬂu.-., _foo,_+..,){_ﬂ].2 - kl,-ffg,_lj
& A
-D;2 - 1 1+
i hl (fl)ﬂ::., fm.,.u) DU‘«-I h]

X (ff)ﬂz,;f+| _fm'.l;—l)r+l -

- i+
R,r'+|fl[)|,'u.,.1j(

i+ {4+ _
+ DrUVf,rjf?f)“ + of||,+|V?_,"-L!ﬁN}|_,+i _.g":,u—': -

(22)

Finally, we use the box method approximations,
Egs. (B), and the boundary condition, Eq. {14), to
obtain the following six-poinl acceleration cquation on
f;lhj_,_.,oj: ]1‘ ,,,J— 1

(Si, + NS L = Ry Sl
+ [QI + Ql;-ii + )\{A + ;‘J-H}] :}+IEJ_I.,
+ {7y, + T1;'+1)f00‘,-,,4 .

+ (Sl,h-l + }\kj-w—l.] 53‘,[,,_,,, - R]j-!—lf[;{]-_..l””_.

= g":;+"': ’ (23)
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where the quantities ¢, R, S, and T are as defined
earlier.

In deriving the acceleration equation for the cor-
ner scalar flux at (3,3), we use the system of Py equa-
tions, Egs. (4), with i = j = 1. After we introduce the
DD approximation into the resulting balance equation
and replace the first moments of f al (he cell ceuler
using the remaining w0 ¢cguavions, we obrain

h
[ Dll (fu(u, .fon.:)H - Dy Il
}
X (fa0yn, — Soor. )“1 — kA3, hlfﬁrﬁl.]
0:”V11.f53.]l = ”s“Vn(\Of}E)Fl]:: - go';_uj.1] .

(24)

Imposing the box-centered method approximations,
Egs. (8), and the boundary conditions, Eqgs. (14) and
{16}, we find

[0 + NK&ky — BDISGL L+ (o — M A
+ (5, + kl)\}ful T R“ff’;(fliul
— ebo,) - (25)

The remaining boundary acceleration equations
may be obtained easily operating in a similar fashion.
This set of equalions aleng with the diffusion equa
tioa, Eq. (9), result ic a linear system where the num-
ber of equations is equal to the number of unknowns
and overall to a complete DSA scheme.

= U_anl'l ((POUH-

1V. NUMERICAL RESULTS

Here we shall consider a model problem to dem-
onstrate the convergence of the discretized linear syn-
thetic scheme and to illustrate the effectiveness of the
acceleration eguations at the boundaries associated
with the optimum boundary conditions. The physical
systemt consists af a homogeneous square L X L, with
L equal to 30 mfp, purely reflective voundary condi-
tions on the left and bortom boundaries, vacuoum
boundary conditions on the right and Lop boundaries,
and a flat source.

Tesl computations have been carried out for var-
ious quadrature approximations and scatiering ralios
¢, without negative angular flux fixup. The mesh inter-
vals /; and &, are alered from | to 15 mfp. For the
reflecting boundarics, the chewe of A = 0 m the
boundary conditions is clear. For the vacuum bound-
aries, there ure many ways that the parameter A can bs
assigned and the choice, it turns out, can affect the
rates of convergence significantly. A pointwise conver-
gence criterion of 10 * for the scular flux is used, The
DSA acceleration equations that arise from the box-
centered difference method are solved efficiently using
standard iterative methods (e.g., symmetric successive

YOL. 100 OCT. 1988
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overrelaxation). The CPU time of the implemented
acceleration scheme compared to the CPU time of the
standard S1 method {or the mode] problem (¢ = 1.0)
is reduced by a factor of ~100. For all cases tested, no
convergence difficultics were encountered.

Primary characteristics and typical results for our
computations are given in Table I. The numerical
results are for ¢ = 1.0 {(worst case), Sg guadralure set,
and h; = k,, and they present the number of iterations
required for convergence with increasing mesh size and
different values of M including A = (n + 1)/3n, n =
1,2,.... The stability of the proposed linear DSA
method against mesh size for this problem is demon-
strated. We find experimentally § < X = § to be the
optimum range of the parameter A. This result is in
agreement with the linear extrapolated distances,'”
which are used to obtain boundary conditions in dif-
fusion theory. For A = 10, the number of iterations
required for convergence is constani, while as A
approaches zero, the numerical scheme, as expected,
becomes unsiable. The presented resuits, including the
choice of A = § as the optimum diffusion boundary
parameter, remain consistent for all test computations
performed.

Finally, we address the issue of the importance
of an acceleration method supplemented with ex-
plicit boundary acceleration equations. In Table I,
we compare the complete acceleration technigue ¢on-
sisting of acceleration equations for interior and bound-
ary net points, with a similar incomplete acceleration
scheme that does not accelerate the scalar flux f, at the
boundaries ( fyo = (). Although both algorithms are
convergent, the improvement to the convergence rate
obtained with the complete acceleration method is sig-
nificant. It is secn that the inefficiency of the incom-
plete acceleration schere exists on coarse and dense grid
sysiems.

Note that the converpence performance of the
incomplete DSA scheme is identical with the conver-
gence performance of the complete DSA scheme as
A= <, which is a limit situation in the framework of the
complete acceleration method.

V. CONCLUSIONS

A study has been carried out for accelerating the
zeroth moment of the angular flux at boundary resh
points in x-v geomelry resulting in a complete DSA
method. The main advantage of the present work is
that the derived nine-point vertex-differenced diffusion
eguation and the six-point vertex-differenced bound-
ary acceleration equations are consistent with the dif-
ference transport equation. The iteration-acceleration
algarithm is independent of the mesh width and has
proven 10 be stable for the mode] problem. The impor-
tance of providing accelcration equations at the
boundaries, associated with the best choice ol the

NUCLEAR SCIENCE AND ENGINEERING VOL, 100

TABLE |

Number of [terations Required for Convergence with
Linear DSA Scheme for Varying Mesh Size and
Boundary Condition Parameter A

A |

k .
iy | L Ly el Tali o]0 ) 100
1 1110|6545 |66 9| 10
5 191137 (5|45 |68 11 11
10 24114 1751437718 13 14
15 27 I4 | 8| 514{5 |7 |9 14 14
TABLE 11
Convergence Performance of Linear DSA
With and Without Acceleration of the
Scalar Flux at the Boundaries
- 1
Cell Width Completc DSA Incomplete
{mlp) th=9 DSA
1 4 12
5 4 13
0 4 14
15 4 14

boundary condition parameter A, has been demon-
strated. The functions w(w) and wi{»n) that are
involved in the computation of A can be chosen in an
arbitrary way. Our conclusion that the DSA method
becomes optimum for § = A < § is valid only for the
DD discretc ordinates transport equation. However,
our results indicate that any acceleration scheme that
provides consistently differgnced boundary mesh point
equations for the discretized diffusion eguation can be
cxpected to be significantly more efficient withow
sacrificing stability.

Another interesting feature of the proposed
scheme, which is peripheral to the main purpose of
this paper, is that it is [inear in its difference form. An
issue that we intend to investigate in future work on
this subject is the comparison of the proposed linear
technigue with the standard nonlinear technique.
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