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Abstract - A  study on fhe de~~l~rlopment ofur-r-elerution equationsfor boundary cells and the associ- 
ated boundary wndiriotzs for the diffusio~l sjnihetic uccelernrion tnethod of neurro,t lranspor! p r ~ b -  
kctns in x-y geome1r.v is described. AI~-oujye'J- aIgebraic mort~puluiion of tht* P, equations resultrn_e rn 
a single d$Jlsion equation is tnodrfied 10 obiuin e~/?i i l . i f  uccelcrutimn rquu~ions for the bo~rrrliury cells. 
To uccomplrsh {his, the di~cretizarion In space is psJonned according ro [lie ordinory bnx-cmler~d 
rnivhod. Thr r~sulling synzhetic cotnpurarivn schorr~. is linear in ir r dzfferenced form. The boundary 
cell dtjl-erence eqiraf ions uri) derived in u m ~ n n c r  Ihal rracfi-v pnrullei~ [he d i~crw~zur ion of rhe d!f- 
fiaron equation for interior mesh cells atld thaz qf rhe / r~?~ . rpor f  ryuorion. The lntportunce of rhese 
equurrons in impro vrng overall eJ!icieprc_l: w~rhouf sacr!fil tng sfubilily i~ iii~ctassed, us is rhe oprirnum 
choice of Ihe Bor~ndary condiriotls ussociured wmirh fhese eguafions. 

1. INTRODUCTION method without sacrificing stability. In rhe present 
work, wc  derive acceleration equations for cells on the 

The diffusion synthetic acceleration (DSA) met h- problem boundary, called boundary acceleration equa- 
odl-h has been extencil ely used to accelerate the slow tions, possessing a sparial discrctlzation that is consis- 
ccrrlvergencc of the  standard source iteration (SI) tent with the discretization of the diffusion equation. 
nlethod for discrete ordinates problems in optically M'e also find the optimum cl-ioice of boundary condi- 
thick region5 uirh scatterin5 ratios c near unity. Sca- tions associated with these equations to improve the 

I 
bilitl- difficulties of early versions of the DSA method efficiency of the acceieratio~~ scheme. Some progress 
have been resolved by ~ l c o u f f e '  by altering the dii- on this problem has been made by ~a r sen , '  but the 
f'erencing of the diffusion equation. success there is limired to problems in slab geometry. 

One important issue not discussed in the fut~da- The derivation of compatible differenced bound- 

I 
1 

mental work of Alcouffe4 is the problem of establish- ary acceleration equalions in X-y geometry [urns  out 
ing difference equations ro accelerate the scalar flux at to bc a nontrivial problem. As we demonstral e in f 
the physical boundaries of  the problem under con- rhr present work, the standard difference form of the 1 

J sidcration. It is well known that to have an uncon- two-dimensional DSA methodd must be altered. Thc . . 
ditionally stable iteration-acceleration scheme, the spatial discretization is periormed according to the d 
differencing of the diffusion equation must precisely box-centered differencc scheme,' which is a natural l! 

E 
parallel ~ h c  differencing of the trailsport equation. For extension of the djatnond-di f ference (DD) approxi- 
this reason, differenced acceleration equations at the mation. We point out tbat the resulting acceleration 
boundary cell5 that possess this con~palibility are very scheme is linear in its difference form. The reliability, 
important in preserving rhe efficiency of  the DSA in general, of a linear acceleration technique compared 
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DIFFUSION SYNTHETIC: ACCELERATION 

ro a nonlinear one has been pointed out by Gelbard et where 
al..'-' both for fised-source%and cigenvaiue9 compu- 
taljon5. 

The organi7acion uf this paper is as follorrs. In 
Sec. 11, the development of the box-centered dit'frrrncc 
transport and diffusion equations for interior mesh 
points is given. The esrension of this algebraic pracr- 
dure for boundary mesh points along with rhs drriva- 
tion of certain bnundar) cnndjlivns is descri beJ in Sec. 
111. In Sec. I V .  nr~merical results are presented and, 
finally, Sec. V conrains a brief summary and conclu- 
sions. I t  should be emphasized that  our analysis is 
based on the DD transaort equation. 

11. F0RMULATIC)N OF T H E  BOX-CENTERED 
DIFFERENCE EVU ATIONS 

In this section, the differenced form of the trans- 
port equation and thc diffusion acceleration equation 
for interior points is derived in x-y geomerry. The 
implemented spatial discretization scheme has been 
introduced b y  ~ s l l e r '  in the context of numerical 
solutions of partial differential equations. I t  is *ell 
kno*n as t he box tnethod and is a simple extension of 
the DD scheme. 

Let us divide the rectangle x-y domain into cells as 
seen in Fig. 1 ,  with i = I , .  . . , I  and j = 1 , .  . . , J. The 
crash sections u and cr, are taken to be piecewise con- 
stanr artd can change values only at the (half-integer) 
cel l  boundaries. Ths standard DD discrete ordinates 
equations wirh isotropic scattering and fixed sources 
are 

1 where 

I I = iteration index 

I pI l r ,  q,, = direction cosines wirh respect to s and 1. 
axes 

w,,, = inlcgration weight factors 

Y , J ( p I , , ~ , , , )  = spherical harmonics. 

Formulating rhe desired acceleration schcme, we 
derive a set of synthetic equations by  laking the zeroth 
and the two first discrete moments (with respect to p 
and v )  of Eq. (1). To carry this out, Eq. (1) is multi- 
plied successively by w , , , ,  I I - , , ~ , ,  and i4),,,7 ,,. Following 
the procedure developed by ~arsen , ' , '  we define thc 
acceleration equations as 

and 

~ ~ ~ ( f ; ; , ; ,  1,: - fi::;-# :) + k,.fdt,I = 0 * ( 4 ~ )  

where 

ur), = #dl - "!,/ , 

and 
I+ 1 I frF1 = C ~ C  - ~ c f i  (5  

Equations (4) are a discretized form of the PI equa- 
tions. 

We now seek the form of a single difference 
diffusion type equation. ~ l c o u f f e ~  presented an al- 
gebraic procedure that allows the system of P1 ac- 
celeration equations to collapse down to a single 
diffusion equation. Adding to Eq. (4a) the correspond- 
ing equations lor thc adjacent cells (i + l , j ) ,  ti, j t I ) ,  
and ( i  + 1, j + 1) and introducing to the resulting 
equation the DD approximations for the first moments 
f,,, and fo, , we obtain 

YJ* V ~ Z  n-----n--;; r1 
h, ,  k j  = mesh spacings 

- - -  - .  YJ- I/? v, = h, kj I 1 I I I I I 

and the diamond equations I 
I I I 

I 

' 1  I I 1 

1 y,* %,I* , , - - - - f f  - j j  
$177,; = - { $ r n i + ~ , z ~  + $ m -  ~ ? j l  2 Y>- c.2 - -  - - -- - -  

1 ' ! I 1 I 4 

(21 1 I 4 I I - - - (IL-:. 1,: + d m - ,  - 1 # I 

The flux moments are calculated by the approximation Y 1,~ L - - - -  I---- a 
x1/2 x3/7 x1-~,/2 x 1 + 1 / 1  X I - 7 , ~  X I + ' ;  

Fig. 1. Cell-centered mesh in x-y geometry. 
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144 VALOUGEORGIS 

where 

Then we substitute Eqs. (4b) and (4c) into Eq. (6) to find 

Since this equation contains a lot of vakabler, Alcouffe approximated two adjacenl ccll-edge fluxes with 
an arithmclic avel-agc of the flux value at rhr intermediate cell xertex, e.g., 

In  addition, he introduced a nonlinear approximalion on the removal term. However, although the implemen- 
tation of these approximations leads to a tractable five-point diffusion equation, i t  does not alIow [he cunstruc- 

I 
tion of compatible differenced boundary acceleration equations. r 

To avoid this drawback, the scalar fluxes at intermediate mesh prlirlts and at mesh centers are eliminated, 
according to the ordinary box-centered difference method, by the use of I 

1 
hIj: ,., = - ( h w , ,  :,, ,.: + JbOi-Ll,t I 

2 
and 

1 
Jn,, = 4 - ( f o ~ ~ - ~ , ~ ~ - , , ~  +fw; C.-l+ll + SOO~+~~, bz +ff~~,+~,,,~,~) , 

respectively. As a result, we obtain the following equation: 

- R  I+J . f w,-, I + !  . : I - ,  . ! + ( S r j + s i + l j ) . f & j ~ i , - L ,  - R~+I~~$:~,,, >,+{K,+~j+~)fk,!~:,,+~~ 

+ (Qi j  + Ql+lj + Qi j ,  1 + Q~+I~+I)J$:,,,+,. + (7;+rj  + 9;+1j+11f&I_,,, , ,  0 :  - ~{j+~f&T~l 1,2,+,: 

I+  1 - + (Sij+l + S , + I ~ + I ) ~ & ; ~ ~ ~ , + ~ ,  - R r + ! j + t f b b , + , , , , , , ,  -gi+!;>;t1:~ - 
where "' I 

and 
1 

ClOa) (10d) 

From the nine-point diffusion equation, Eq. (9), 
( lob) we can calculate the correction term .f&,l, !... 

now completc the acceleration scheme by shifting the 
l~nknowrls in Eq. (1) from cell-average and cell-edge 

(1 oc) angular fluxes to cell-vertex angular fluxes. Subs1 hut- 
ing the box scheme approximations into Eq. ( I )  yields 
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DIFFUSION SY N TliETIC ACCELERATION 

which determines the corner angular fluxes onls. 
The acceleration scheme now consists of the 

vertex-di fferrnced transport and diffusion equations, 
Eq5. ( I  1) and (9), respectively. The prescnt approach 
i s  characterized by the absence of any approuimations 
that destroy the consislsncy and the full compatibility 
of Ihe equations in their difference form. The synthetic 
iteration process is linear and the nine-point diffusion 
equation bas been derived i n  a way that exactly 
parallels the differencing of the transport equation. In 
Sec. I I I .  we use a similar procedure to give consistent 
boundary equations for the discrcti~ed diffusion equa- 
tion, Eq. (9), defined for interior mesh pcljnts only. 

Ill. FORMULATION OF THE DIFFERENCE 
SCHEME AT THE BOUNDARIES 

We now turn to the question of providing bound- 
ary cell equations to the discretized diffusion equation. 
Eq. (9), defined for interior net points. It is obvious 
that these eauations associated with certain boundarv 
conditions will improve the convergence rate of the 
acceleration scheme, and we accomplish this without 
sacrificing stability. In this section, we first develop 
consinent boundary conditions and then derive explicit 
acceleration equations on ffi' at the  boundary mesh 
points. 

Il1.A. Soltnd(try Conditions 

The objective is to generate the diffusion bound- 
ary conditions from the transport boundary condj- 
tions,' and thc guiding principle is the assumption 
that the exact trarisport solution is a linear function 
of u and n. We first treat the left boundarv. at s = X L  . .. , 
and )-' = y,,,:, j = 0,1,. . . , J. I f  there is a prescribed 
incident flux, then we consider 

&I!,+~~(P,V) = Po0 I,, +,.i + ~ P P ~ O ~ ! , + ~ , ~  +  POI\^,+',^ 
( 12a) 

' I  f o r O c p s  1, -(1 - p-),' 5 9  5 (1 -p2)'*, and the 
integral that defines the flux moments has been trans- 
formed to the corresponding integral over a disk. If we 
require the diffusion angular flux on this boundary 
defined bv 

I+ 1 I+ 1 /+ 1 
& ! $ + , I  ( P , v )  = PW,,~,+!.. + ~ P P I O ~ , , , + ~ :  + 3$901~, ,+~:  

which becomes exact on convergence. Multiplying 
Eq. (13) by (1/2n) (1 - p2 - v2)-1'jw(p) and intrgrat- 

-\  1': > 1 

j n g o \ e r O ~ p ~  I and-(1  - p - )  5 ~ s  (1 -g-) ' 
yields 

where 

By setting w ( p )  = p" I ,  n = 1,2,. . . , we find h = 
( n  + 1 ) /3 n. For a prescribed incident flux, including 
thc case of vacuum boundary conditions, any choice 
of thc  iunciion ltb(p) leading to a parameter h greater 
than zero i~ physicalIy justified, while for reflccling 
boundary conditions A = 0. Finally. in the limit as 
X + m, ~ i l e  correction term f& ' becomes zero, which 
corresponds to a DSA method without acceleration at 
the boundaries. In Sec. IV, we present a detailed 
experimental study on the effect of the parameter A. 

Next, we treat the but lorn boundary at x = xi ,  
i = 0,1,. . . ,I, and y = 1.1 :. For a prescribed incident 
flux on this boundary, we find 

Multiplying Eq. (16) by (1/2a)(l - - q')-l,'iw(.rl) 
and integrating over -1 5 p 5 1 and 0 5 q 5 (1 - 
p2 ) ", we obtain the condition 

Following the  same procedure, wc find 
I +  1 - I +  1 

f l~,+l.i,+ - , + ,  7 j = 1 -  J (18) 
and 

(12b) /+ I - !+1 
l l , , +  - + 3 = 0 , .  - , (19) 

ro satisfv the same boundarv conditions as the trans- 
port flux, then we obtain t i e  fallowing condition on a1 the two remaining boundaries of the two-dimen- 
the correction term: sional grid. 
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III. B. Boundury Arreierulion Equarions where the quantj~ies Q, R ,  S, and T are as defined 

M'e now seek differenzz boundary equations, fi h~ch earlier. 
In deriking the acceleraticln equation for the cor- 

associated with Eqs. (141, (17), (181, and ( I Y )  may yield ner scalar al re use the sysrem equa. 
explic-il acceleration equations on , f ; ~ ~ '  at the  bound- I:ons, Eqs. (41, thith t = j = 1. After w e  introduce the  a r j  ner points. A detailed dcrivatiorl of these equations 
is presented only  at onc of the four bouudaries and DD approximation into the reiulting balance equatiorl 

and replace the first moment$ off  a1 (he cell c e l l k ~  also at one of the four conlers. Sjmilar analysis nlay 
using the remaining two cqualions. w e  obtain be carried out  to  deduce the remaining equationj. 

U e  choose the left boundary ar .r = XI,.? and y = 

.vj, ,. j = 1 . .  . . , J  - 1. Summing Eq. (4a) over two  
bouttdary adjacent cells ( I .  j )  and ( 1,  j + 1) yields 

1 

where Imposing the box-centered method approximations, 
j+  1 Eqs. (8), and the boundary conditions, Eqs. (13) and 

- If I.? I 
g ] r l + ~ ~  - C ~ J , , ~ ' I ; I ( F U O ~ ~  - ~w,,) . (161, ~e find 

f l = f  
2 J 

We introducc the DD approximation into Eq. (20) t o  [ Q I I  + A ( ~ I  - h i ) ~ f $ , ' ~ , , ~  + (Ti, - h i ~ l f ! + ~ ~ >  

obtain + (SII + k lh ) f$ , , : . :  - R  I I  F ~ O , , ; . . ~  

21k,(f1'o',j -f;:,',,) + k,+i (.f/d,:, - J / ~ , ! . ~ , ~ )  = obi, ~ 1 1  - vLol,) . (25 )  

+ h ,  (fd6;- - f Z l : ) ]  + orl,vljf'0'I:,: The remaining boutldary axeleration eq~lations 

I+ 1 
may be obtained easily operating in a similar fashion. 

+ 5 r j , + ,  p7lI+, . f ~ j ~ , + ~  - g ~ , +  I ;  . (21) Thi5 set uf c q u a ~ i n n s  along with ihc diffusion e ~ u a  
7 

Evaluating Eqs. (4b) and (4c) at i = 1 and j = J, j + 1 tion, Eq. (91, result ir. a linear system &'here the num- 

and substituting the resulting equations for f l o l , ,  ber of equations is equal t o  the number of unkrlowns 
and overall to a cumplelr DSA scheme. 

flol,, 1 .  f u l l ,  . A;;;, into EY ( 2  1 )  

1V. NUILIEKICAL RESULTS 

k. f '+' x ( . fnnl , ,  ., - f ~ o , . + ~ , j : ; : ] ~ ~  - / lo:.,, 

- 4 A,+ l 
Dlj ( f ~ : : ,  -JM~,,?,)'+' - D ~ j ~ i  - 

f=7 1 

x (SDO~,:,+~ - fm!l,-l)l+l - k-j+lf:&!, , j  

v f'+: = 

I 
+ Q,I,VI,J&;: + n r , + ,  ,,A, ,,,,+( i ? l , , L l I  - 

(221 

Finally, we use the box method approximat  ions, 
Eqs. (81, and the boundary condition, Eq. (14), to 
obtain the following six-point acceleration equation on 

I 1  A#7,1,,+I,l J = 1 , .  . . , J  - 1 .  

(Sl,  + ~ k , ) f $ # ' , ~  -,,, - ~ l ~ f ~ . ' , ,  ?: 

+ [ Q I ;  + Qi,+ 1 + h(k ,  + h i+  i )l.fk,,; ,-,,, 

+ ( T I /  + Tl,+l)f&,,!z/, m :  

+ (Sl,/+, + hkJ*l)f&,,: ,,_,,> - RI,+lf:ofl:,, 7,: 

- 
- =/+I , , :  , (231 

Here we shall consider a model problem to dem- 
onstrate the convergence of the  di~crelized linear syn- 
thctic scheme and lo illustrrtre l h u  effectiveness or ihe 
acceleration equations at the boundaries associated 
with the opljrnum boundary conditions. The physical 
5ysrzm consists of a homogeneous square L x L. r\-i?h 
L equal to 30 mfp, purely reilective boundary condi- 
tions on the lefl attd bottom boundaries, vacuum 
boundary zondi~ions on the righr and top boundaries, 
and a flat source. 

T r h l  co~ayutat ions  havc bcen carried out [or var- 
ious quadrature approximations and scar~ericg raiios 
c., w~thout negativc angular flux fisup. The mesh irl ter- 
vals hi and k, are  alrered from I to 15 mfp. For thc 
reflecting houndarics. the choicc of X = 0 in !he 
boundary conditions is clear. For the vacuum bound- 
aries. there arc many ways that the parameter h can be 
ashigned and the choice, it turns out, can affecr the 
rates of conbergence significantly . .A point* ise conker- 
gence criterion of 10 ' for the scalar flux i s  uscd. The 
DSA acceleration equations [hat arise from the bud\- 
centered dilf  erence method are solr.ed efficiently using 
standard iterative methods (e.g., symmetric ~uccessivc 
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DIFFL'SION SYNTHETIC: ACCEL.ERATIT)N 147 

ovtrrelaxation). The CPU timc of the implemented TABLE l 
acceleralion scheme compared to the CPU time vf  the Numbcr [le ra t ions  Required for convergence 
standard S I method fur ihe model problem ( r. - 1.0) Linear DSA Schcme for Varying Mesh 5izr and 
is reduced by a factor of - 100. For all cases tested, no Bounddry Condition Parameter X 
convergence difficulties were encountered. 

Primary characleristics and rypical results for our 
computations are given in Table I .  The numerical 
results are for c = 1.0 (worjr case), SR quadralure set, 
and h, = k,, and they presenr the number of iterations 
required for convergence with increasing mesh s i ~ e  and 
different values of X including X = ( n  + 1)  /3n, n = 
1,2,. . . . The stability of the proposed linear DSA 
method against mesh size for this problem is dtmon- 
strated. We find experimentally 5 X 5 j to be the  
optimum range of the parameter h. This result is in 
agreement \k i th  the linear extrapolated distances,'" 
which are used ro obtain boundary conditions in dif- TABLE I 1  
fusion theory. For h r 10, tht. number of iterations 
required for convel-gence is coostant, while as h Convergence Performance of Linear DSA 

approaches zero, ~ h r  numerical scheme, as expected, With and  Without Acceleration of !he 

becomes unsl able. The presented results, including the Scalar Flux at the Boundaries 

choice of X = $ as the optimum diffusion boundary Cell Width 
remain consistent for a11 t e s ~  computation3 

-- 

Finally, we address the issue of the importance 
of an accelerariotl method supplcmenred with ex- 
plicit boundary acceleration equations. In Table  11, 
w e  compare the complete acceleration technique con- 15 
sistjng of acceleration equations for inrerior and bound- 
ar) net points, with a sirrlilar incomplete acceleration 
scheme that does not accelerate the scalar flux foe at thc 
boundaries ( j ; , ~  = 0).  Althoush bo th  algori~hms are 
convcr_eent, the improvement t o  [he convergence rate boundary condition parameter A,  has been demon- 
obtained with the complete acceleration method is sig- ~ t r 3 t ~ d .  The Functions M ' ( P )  and )+'1.( 7) that are 
nificant, ~t is seen [hat the inerf'jcjency of  he incom- involved in the computation of can be chosen in an 
plete accelcration schernc exists on coarse and denst grid arbitrary way- Our conclusion tha t  the DS.4 method 

becomes optimum for 5 h 5 j i s  valid only for the 
Note [bar rhe convergence performance of the DD discrelc ordinates transport equation. However, 

incump]ete DSA scheme is identical with the conver- o u r  results indicate that an). acceleration scheme 1 hat 
getlce of the complete DSA sEhemc as provides sc~nsistently differenced bounday mesh point 
,++ m,  which is a limit situarion i n  the framrlrork of the equations for the discretized diffusion equation can be 

complete accelzratjon method. cxpected to br significantly morc efficient withou~ 
sacrificing srability. 

Another inwresting icsture of the proposed 
V .  CONCLUSIONS scheme, which is peripheral to thc main puipose of 

this papcr, is that it is linear in its difference form. An 

A study has been carried out for accelerating the issue thal we intend to investigate in future work on 

zeroth momcnt o f  the angular flux at boundary mesh this subjec.1 is the comparison of the proposed linear 

points in s-.Y geomelry resulting in a complete DSA technique with thc standard nonlinear ~echnique. 

method. The main advantage o f  the present work i~ 
that the derived nine-point vertex-differenced diffi~sion 

- 
equation and the six-point vertex-differenced bound- ACKNO WLEDGXIENTS 

4 
ary acceleration equations are consistent with thc dif- The aulhor would like to acknotvledge many enlightrn- 

1 ferencu transport equation. Thc iteration-acceleration i,E discurhiuns about slnthe,ic acceleration iv,th 
I algorithm is independent of the mesh width and has E. lj,, Larscn, 

proven to be stable for [he model problem. Thc impor- This tvorh was supporrcd in part b\ U.S. Department 
! lance of prosiding accelcrarion equations at the ot Encrgy Grant ~ ~ - ~ S 0 5 - 8 0 ~ ~ 1 0 7 1  1 and National Sci- 

boundaries, associated w i t h  rhe best choice of the ence Foundatint~ Grant DhIS-6712451. 
i 
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