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Abhstract — A study of the speciral radius for the continuous form of the source iteration, diffusion
synthetic acceleration, and various P, accelerarion methods (L = 1) for anisotropically scatlering
neutron transport is carried out vig a Fourier stability analysis. The purpose of the study is to deter-
mine which acceleration scheme is optimum, The problem is formulated as a matrix eigenvalue prob-
lem with, in general, N + 1 iteration eigenvalues w where N denotes the degree of anisotropy. The P,
acceleration method is determined as the most efficient P, approach for the cases of linearly and

guadraticaily anisotropic scattering.

[. INTRODUCTION

The diffusion synthetic acceleration’ ¢ (DSA)
method has been extensively used to accelerate the
slow convergence cf the source iteration (51} method
for neutron transport problems in optically thick re-
gions with scattering ratios ¢ near unity. Stability dif-
ficulties of early versions of the DSA method have, to
some extent, been resolved*®® by developing difference
schemes of the diffusion equation that are consistent
with the difference schemes of the transport equation.
Very recently, Miller and Larsen’ studied the spectral
radius of general P, acceleration methods and found
that for problems with isotropic scattering, DSA (or
P, acceleration) is the optimum P, approach. The
general case of anisotropic scattering was first consid-
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ered by Morel.? He found experimentally that a P,
acceleration scheme, which now is not equivalent to
DSA, is superior to DSA,

In this paper, we study the effectiveness of P;
acceleration of the iteration process for solving the
transport equation with two coefficients of anisotropy
and £ =< 3. Our study is restricted to the analytic trans-
port equation with no angular or spatiat discretization.
Qur approach is based on a Fourier analysis to deter-
mine the spectral radius of the iteration operator.
Without a doubt, the use of the infinite medium con-
stant cross-section problem as the model problem for
the Fourier analysis is highly idealized. However, pre-
vious experience with DSA indicates predictions of the
spectral radius that are quite close to the numerical
convergence rates of more realistic problems. For
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example, our present results for the linearly and quad-
ratically anisotropic scattering cases provide theoret-
ical evidence of the empirical results of Morel.® It is
important to note that the present Fourier analvsis
leads in general to N + 1 distinct eigenvalues and
eigenvectors, where N is the order of anisotropy. The
number of accelerated moments plays an important
role in the behavior of these eigenvalues as a function
of the Fourier frequency.

We begin our analysis in Sec. 11 with a study of
the S1 method. We continue in Sec. [II with the devel-
opment of a P; acceleration method assuming two
degrees of scattering anisotropy. In addition, we pre-
sent numerical resulls for the theoretical convergence
rates of certain P; acceleration methods. Section IV
contains results and general remarks about the perfor-
mance of P, acceleration schemes in al]l Cartesian
geometries. Finally, in Sec. V, we give a brief sum-
mary and conclusions.

II. ST METHOD

The ST method can be described by the equations

a¢{!+1/2}

—— ¥ P

M

N
=c3, 2n+ DALP (e (x) +s(x) (D)
n=0
and
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where

¢ (x,u) = particle density
fn = n'th coefficient of anisctropy
P.(x) = n'th Legendre polynomial

¢,{x) = n'th Legendre moment of ¥ (x,pu) de-
fined by Eq. (2)

! = iteration index.

To determine the spectral radius of the SI scheme, we
define

TUHD () = U (v ) — P2 () (3a)
and
U = LU () _ oD (x) | (3b)

and apply a separation of variable Fourier mode solu-
tion to the equations
v (I+172)

e +\I,[:‘+l/2)(x,u)

M

N .
=c (2n+ DfPa(u)2) (x) (4)
n=0D

NUCLEAR SCIENCE AND ENGINEERING

and

al
UM (x) = % ! P YYD (v uydu . (5)

-y

These equations are obtained by subtracting Egs. {1)
and (2} for successive iterates., We use the Fourier
mode ansatz:

VD (np) = og(plexpiny) . (i=V=1) (6)

and

P (x) = w'byexp(inx) 7N
where @ is the eigenvalue corresponding to the Fourier
frequency A. Substituting Eqs. (6} and (7) into Egs. (4)
and (5), we obtain

N
gl = — S Qn+ NAPwb, (8

] + I)\p. n=0
and

A

wb, = 3] [%c(Zer S
e

L Py ()P (1)

xf_. L LR

0=n=N. (9)

Hence, if we define

Aun(N) = 5 (2m 4 Dy,
xf1 Py ()P {t)
1 1 + f}\,u ’

0=n,m=<N, (10)

1then we gbtain the matrix eigenvalue problem
N

wby= >, Apmbm » 0=n=N . (11)
m=0
By setting A = 0, we can easily deduce from Egs. (10)
and (11) that «,(0) = ¢f;, 0 < { =< N. Note that, in
general, there are &V + 1 distinct eigenvalues and eigen-
vectors. To obtain the spectral radius

p = max sup |w, ()] (12)
O=i=X& A

of the iteration map, an upper bound for |w;| as a
function of the parameter A must be determined.

To demonstrate some explicit results, we consider
here the special case of linearly anisotropic scattering.
We find

A A Z3if, (1 — A)/A
(V=€ i —ayn 3£,01 = A)/N2
(13)
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where

A=tan ' (AN, (14)

and the expressions for the two eigenvalues are

C I— A 1 — A

wya = E[A+3f| }\2 +* [Az‘}-}fi )\3
_ y L2
x(2A+3f11>\2A—4|] ] . (15)
/

Plots of « versus A for the SI method are given in
Fig. 1 for ¢ = 1 and for f, = ( (isotropic scattering)
and f; = §. Both “anisotropic” eigenvalues are real for
0 =< A = 1.93 and are complex conjugates for A = 1,94,
In Fig. 1, we plot the absolute value of A for A = 1.94.
The two eigenvalues corresponding 1o the anisotropic
case are less than the isotropic eigenvalue for all val-
ues of A > 0. Since for a finite system the flat A =0
mode cannot be present, we may argue that the con-
vergence of the linearly anisotropic problem should be
slightly faster than for the isotropic problem. How-
ever, for the model] problem under consideration, we
find the absolute maximum value of all w, which oc-
curs at A = 0, to be independent of f; and equal to c.
Hence, for ¢ {arbitrarily) close to unity, the $1 method
will converge (arbitrarily) slowly.

III. THE ANISOTROPIC P,
ACCELERATION METHOD

HI A, Formulation of the Scheme
and Stability Analysis

For simplicity we restrict our study to the transport
equation with quadratically anisotropic scattering.
Williams® has derived a synthetic acceleration scheme
with highly forward-peaked scattering. However, be-
cause his derivation was somewhat peripheral to the

wlA)

Fig. 1. Plots of w versus A for the 8] method with
isotropic scattering (upper curve) and linearly anisotropic
scattering {lower curves).
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main purpose of this paper, we present again a simi-
lar P; acceleration analysis.
The form of the equation under consideration here
is
ayb(.’-f—l/Z)
# dx
= cLfoed (x) + 3P (w)e)” (x)
+ 56LP (e ()] +s(x) ,  (16)

where the terms are as defined earlier. Formulating the
desired acceleration scheme, we take the first X + 1
Legendre’s moments of Eq. (16) to obtain the set of
equations

+ ‘l&(|’+1/2) (x,p.)

f+1/2 4172
k+1 dﬁf’;i++1 ’ k d‘l"i:—+1 ) + pl+Lrd
dk+1 dx 2k+1 dx k
=cfk¢k+5ms, k=0,],---,K, (17}

and we now define the acceleration equations as

k+1 d‘pt_H]\ k dw(:‘jl] .
2k + 1 g taksl et —efae "
=08kps, k=0,1,...,K—1 (182)
and
K d‘-”;i” {1+ 1)
+ (1 -
2K+ 1  dx (= cfxdex
_ K+1 d'P}{(f:lwzj (ISb)
T 2K +1 dx ’

where f;, = 0 for & > 2. Subtracting Egs. (16) and (18)
for successive values of /, we obtain the equations

#B\P("“/Z) + U (5 0
dx ’
= clfo®(x) + 3/ P ()8} (x)
+ 5AHP(u)@ (x)] (19)
k+1 dcp;iﬁ_“ . Kk deltb
2k+1 dx 2k + 1 dx
+(-cfe* V=0, k=01, .. ,K-1,
(20a)
and
K deg) (/+1
1 — pUTD
K+l ax T UKk
K+ dg{ A (20b)
TOO2K+ 1 dx ’

which are amenable 10 Fourier analysis. Proceeding as
before, Egs. (6) and (7) are introduced into Eq. (19)
1o find

2
(4
- 2n + 1 21
g(u) 1+f)\,u.,,§=0:(n YaPrp)b,  (21)
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and into Egs. (20} to obtain the vector equation

K+1
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wDb = 3R 1 iNVGryy (22)
where ] i
1—cfy in 0 0 0
iN3 1 —cfy 2iN3 0
0 2ix/5 ) —cfs 3iN/S
D= 0 0 3in/7 1 ,

) KiIN(2k+ 1) 1 (k+ 1N 2k+1) O
0 0 KinN /(2K + 1) 1)

withk=0,1,...,K; 87 = (bp.by,... . by)and ¥7 =
(0,0,...,0,1) are two constant (K + 1) vectors; and

1 1
GK+1=Ef P (wglp)dp .
-1

We now recast the expression for Gy, into a more
convenient form. Introducing Eq. (21) for g{u), we
obtain

Gy =Fb , (23)
where F is a row vector with components
2n+ 1 ' P (w)Palp)
A) = — ,
F,(M =i f_I L+ irg
O0=n=K,

where F,, = 0 for n = 3 because f, = 0 for n = 3.
Equation (22) can now be written as

wb = Ab | (24)
with
K+
5K+ 1 i\D— VF . (25)

It is obvious that this is an eigenvalue problem where
w are the cigenvalues of A and b the corresponding
eigenvectors. However, we note that according to
Eq. (25), A is the product of a column vector times a
row vector, and because of that its rank is equal to
unity. Hence, we obtain one dominant eigenvalue
while the K remaining eigenvalues are identically equal
to zero. In fact, by multiplying both sides of the vec-
tar [Eq. (24)] by F, we deduce the following scalar
equation:

_K+1
2K + 1

We conclude that in general a P; acceleration
scheme with L = N, where N denotes the degree of
anisotropy, sets N of its N + 1 eigenvalues equal to
zero. Thus, study of the one nonzero eigenvalue is

INFDTY

w =

(26)
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sufficient to obtain the convergence rate of the accel-
eration scheme. On the other hand, the choice of
L < N is reasonable since from a computational point
of view it is desirable to solve a small system of P;
equations. In the following section, we evaluate the
computational effectiveness of different P, accelera-
tion methods.

HI B. The Speciral Radius of Certain
P; Acceleration Algorithms

In this section, we develop closed form expressions
for the eigenvalues of certain orders of P; accelera-
tion for the worst case of ¢ = 1.0, and we then numer-
tcally solve these equations. We start our analysis with
the evaluation of the convergence rate of the classical
DSA scheme in the case of quadratically anisotropic
scattering. The DSA method for the analytic transport
equation is now described by Eq. (16) coupled to the
diffusion equation:

3 # + (L — e}l — ™
3 dz(p(H]/z)
= @

while the first and second moments of the angular flux

=+ 1 : 4
{p]u ”(x) _ Ef PV (xu)du (28)
-1
and
]
@éwl){x) — %f Py (x,uydu , (28b)
.

respectively, are not accelerated. Performing the same
Fourier stability analysis on this method as we applied
in the P; acceleration method in Sec. I111.A, we obtain
@, = 0 and

wy3 = % (B + (B%—4y)?], (29)
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where

5
B=h— %—(1—:&)(1 ~ S+ 3
9 /1 1—A 6

and

2
v=5frfziHA—%(1—A)] +(1-A)

‘)—%(1—A)+AH,

(30b)

with A defined in Eq. (14). From Eq. (29) it is easy to
show that as A approaches zero w, = f; and wy = f.

Next we consider the P, acceleration scheme,
which is described by Eq. (16) and the acceleration
equations '

(i+1)
—— T -0 =0 (31a)
and
1 d\céH—” N (1 _Cf) .y _ % ld-‘pz(f+1/2)
3 dx ad 3 dx
(31b)

and Eq. (28b). A similar Fourier analysis vields w; =
w; = 0 and

3 5
w3=|iA—F“—J\):|(1+Zf1)

45 1/1 1-A
+ 2 v(i - T) - (32

The last expression for the nonzero eigenvalue (¢ =
1.0} is independent of f;, and w3 = f; when A = 0.

Finally, we consider P; acceleration methods with
L =2 and 3. The formulation and stability analysis of
these acceleration schemes can easily be deduced from
Sec. I1I.A. The eigenvalues for these methods, which
are obtained directly from Eqs. (24) and (26), are
w) =wy = 0 and

3 5
TS0 -5 {3“ - M(l * Zfl)

1 1-A 7
- - - T 1 — fn
5(3 X )( +2f-)
75 1 1 1]—A\]
+_ - T T~ - . »
4f2[5 )\2(3 A2 ,'-J]

(33)

Wy =

for P, acceleration, and w; = w; = w3 = 0 and
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_ 3a2
9N + 35(1 — fr)

5 13 13
X{3A(l+Zf2)_F(1_A)(2+?f2)
571 1—-—A 125
i) ()

_S8 AL 11 1-A)
4 TTA S5 A\3 L

(34)

for P; acceleration. Both Egs. (33) and (34} are inde-
pendent of f.

We have numerically solved Egs. (29), (32}, (33),
and (34}, and Figs. 2, 3a, and 3b provide some insight
into the behavior of w as a function of A. Table I con-
tains the spectral radius for each of the four itera-
tion-acceleration schemes under consideration. The
inefficiency of the P, acceleration method is easily
observed. In fact, this algorithm becomes unstable and
nonconvergent when f; # 0. It seems that the histori-
cally bad performance of the even order P; approxi-
mations'® becomes even worse in the case of highly
anisotropic scattering,

Wy

ra

tad |

™

0.4. DSAlf =1

0.2t

wl A

-0.2+ P2

-0.4r ‘H-“‘“u

-0.6 —

Fig. 2. Plots of » versus A for various orders of P,
acceleration with linearly anisotropic scattering.

TABLE I

Spectral Radius of Anisotropic Synthetic
Acceleration Methods

A 0.0 i
Acceleration
Method 5 0.0 0.0 0.2 0.4

DSA 0.2247 | 0.3562 | 0.4140 | 0.4972
P 0.2247 | 0.2247 | 0.3147 | 0.4261
P 0.8 0.8 1.25 2.0
Py 0.1108 | 0.1108 | 0.1445 | 0.1806

(JUNE 198%)
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DSA(f, = 1} -
0‘4[ __1 3 c=1.0
L p——
0.2t e
S Y ——— oD ITT
= T DSAlf, =3
3 0.0f-
Py
-0.4! e
—0.8'
0 2 4 6 8 10

A

Fig. 3a. Plots of w versus A for various orders of P,
acceleration with quadratically anisotropic scattering, f; =
0.2

- ' DSA(f, = 1)
4 : e R i 3
3 0.0
-0.6- P,
—-1.2]
0 2 4 6 8 1o
A

Fig. 3b. Plots of « versus A for various orders of P;
acceleration with guadratically anisotropic scattering, f; =
0.4.

In Fig. 2, we show the eigenvalues for various
orders of P; acceleration with linearly anisotropic
scattering. By setting f;, = 0, Eqs. (32), (33), and (34),
which are independent of the first degree of anisot-
ropy, reduce to the equivalent expressions for the case
of isotropic scattering. Hence, we conclude that the
effectiveness of the linearly anisotropic P, accelera-
tion with L = 1,2,3 remains identical to the effective-
ness of £, acceleration observed in isotropic scattering.
The only exception is DSA, which now is not equiv-
alent to P, acceleration and has a spectral radius that
is a function of f, and equal to 0.3562 for f; = i
(worst case). The reduction in the error from one iter-
ation to the next for the P; acceleration (p = 0.2247)
is improved by a factor of 1.6, while the computa-
tional cost associated with the acceleration of the first
moment is trivial.® This result provides a theoretical
justification of the numerical work of Morel.¥ Fol-
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lowing a simple calculation suggested by Miller and
Larsen,’ we find that two P, sweeps take 4 time units
and reduce the crror by a factor of 19.8, while a sin-
gle P; sweep requires at least the same compttational
time and will reduce the error only by a factor of 9.02.
Thus, we argue that for the case of linearly anisotropic
scattering the P, acceleration method is the optimum
technigue,

In Figs. 3a and 3b, we present results for the more
general case of quadratically anisotropic scattering
with f; taking values in the set §0.2, 0.4}, The two
curves associated with DSA correspond to the two
nonzero cigenvalues. The performance of the standard
DSA method is degraded with increasing anisotropy,
with a spectral radius of ~0.5 for the worst case of
Ji =1 and f5 = 0.4. The P, acceleration performs
slightly better, while the P, acceleration is best. The
spectral radius, going from the P, to P; acceleration,
has been decreased by a factor of 2.36, but the com-
putational effort of solving four coupled acceleration
equations {or two coupled diffusion-type equations)
has increased. Two P, sweeps reduce the error by a
factor of 5.51, while at the same time a single P
sweep reduces the error by a factor of 5.54, Although
the choice of the best P; acceleration approach for
quadratically anisotropic scattering is not as clear as
for linear anisotropy, our results indicate that P, ac-
celeration remains the optimum acceleration algorithm
to solve realistic problems,

IV. P, ACCELERATION IN ALL
CARTESIAN GEOMETRIES

Now that we have selected the P, to be the op-
timum acceleration method for lincarly and quad-
ratically anisotropic scattering in slab geometry, we
extend our study to the performance of the P; accel-
erafion in all Cartesian geometries. To avoid algebraic
complexity, let us consider only the two-dimensional
monoenergetic neutron transport equation with linear
anisotropy. Then the standard SI sweep is described by

d d
(nu' a_x + N 5 + l)¢(-’+1/2) (X;.}’,#sﬂ)

= c[fopge (,¥) + 31 P (w)e ) (x,y)
+ 3P (el (6], (35)

and the integral that defines the flux moments has
been transformed to the corresponding integral over a
disk

oD (x,¥) = LIPm () Py (Y2 (6,0, -
(36)

The integral operator L is defined as

VOL. 99 (JUNE 1988)
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1 | “_#2]]/2
L=ﬂf f (1= u2 =22 V2 (Ydndp ,
ERTILITE

and P,,(x) and P,(yn) are the »’th and n’th Legendre
polynomials, respectively.

Formulating the P, acceleration scheme, we retain
Eq. (35) and derive a set of synihetic equations by tak-
ing the zeroth and the two first moments (with respect
to » and ) of Eq. (35). To carry this out, Eq. (35) is
multiplied first by (1 — p2 — %)~ '? and then succes-
sively by Po(p) Po(n), P ()} Py(q), and Po(p) Pr(n),
yielding

d . J !
g eie t gy e U= aeyt =0, G7a)

1

3 %wé{,"” + (1 —cfey"
= et - g;iyso.‘i'*"’“ . 4Ty
and
% %wéﬂ“’ + (1= cfel "
_ g%%&?“h _ %p;:ﬂm .37

We recast the transport and the acceleration equations
into the following form:

3 &
(u o Ty + I)T‘f*"z’(x,y,u,n)

= c[fodsy () + 3f P ()} (x,9)

+ 3P (@ (e (38)
4 a .
a_xq,l(éﬂ) + 5 ¢,é;’+l) + {1 — C‘)‘I’{%H) -0, (39a)
1 4 ti+1) (+1}
3 aém + (1 —cfirdy,
29 U+1r2) d s
= — 5 a ., — 5 *19“ . (39b)
and
13 _ ey (f+1)
55}@0‘) +{1—Cf}}'~i’0]
2 4 r d
- _ : 5 (I’é£+l 2y aF(I)](;w]/z) , (39¢)
with
WD (v 0,m)
= ¢ () =YD (xp )
and

f+1 ! ]
BUFD (x,3) = it — o).
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To determine the spectral radius of the P, scheme
described by Eqgs. (35) and (37), we introduce

YU (xy ) = @'g (u,n)exp[iN(xb, + 38,)] ,
(i=+v—1) (40a)
and
4 (X,p) = @'bppexp ik (x8: + ¥0,)] ,  (40b)

where A = A(6,,0,) with 87 + 67 = 1. Substituting the
ansatz, Eq. (40), into Eqgs. (38) and (39) results in

boo + 3fipbio + 3f1nby

&) = N by + 16,) @D
and
w[iN0 Do + iNByBor + (1 — C)bge] =0, (42a)
i
w[§ Ay boy + (1 — Cfl)bm]
L2 .
= —! 5 }\QXGZO - 1)\3_‘1011 , (42b}
m[é AN boo + (1 — Cfl)bm]
L2 .
= —i 5 )\6}.692 - IASXG“ 4 (42C}

respectively, where

Gmn = L[Pm(#]Pn(ﬂ]g(p.q)] .

Thus, we have a system of three equations, so, in gen-
eral, for each A there are three distinct eigenvalues and
eigenvectors. After some routing manipulation, we ob-
tain w; = w> = 0 and

—3L[(p0; + 98) (p,n)]) + Llg{p.n)] (43

why =
1+%(1—(-)(1—cﬁ)

The integrals in the explicit expression for ws can be
evaluated analytically to vield

3 3 3
- n0 o] (13- )
C

= 3 :
1+ 32 (1 —cY1 —cf1)

(44)

finally, for ¢ = 1 we get
w;zA—%(l—A), (45}

where A ts as defined earlier. The point to be stressed
here is that Eq. (45) is independent of f; and is iden-
tical to Eq. (32} for f; = {0, which describes the one-
dimensional P, acceleration method. Similar results
can be obtained for various orders of P; acceleration,

(JUNE 1988)
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This analysis shows that plane wave solutions of
the x,y or x,y,z exact transport equation must reduce
to the solution of the slab geometry equation. Thus,
for the analytic transport equation, P, acceleration
methods must perform equally well (or poorly) in all
Cartesian geometries. We conclude that in multidimen-
sional geometries the P, acceleration remains the pre-
ferred algorithm in order to obtain good acceleration
in transport calculations with linear and quadratic
anisotropy.

V. CONCLUSIONS

In this paper, we have developed a Fourier stabil-
ity analysis to evaluate the convergence rates of the SI,
DSA, and P, acceleration methods in their continu-
ous form for the case of anisotropic scattering. The
problem is formulated as an eigenvalue problem with,
in general, N + 1 iteration eigenvalues w, where N
denotes the degree of anisotropy. By studying various
P; acceleration schemes, we proved that the perfor-
mance of the DSA method is degraded as the scatter-
ing becomes more forward peaked, but the DSA
scheme is significantly improved if one accelerates
both the zero and the first angular moments. In fact,
we found, from an overall computational point of
view, that this P, acceleration method is the most
efficient P; approach for the cases of linearly and
quadratically anisotropic scattering in all Cartesian
geometries. However, Table 1 shows that the spectral
radius of the P, acceleration method also increases
for increasing anisotropy. We note that for the worst
case under consideration (f; = 1, f; = 0.4) the P, and
P; methods are competitive. Because of this, higher
order acceleration schemes may be competitive when
the scattering is more forward peaked (N > 2). Our
conclusions strictly hold only for the analytic Pr ac-
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celeration methods. However, previous experience
with the DSA method has shown that our results are
indicative for the associated discretized versions of P;
accelerations, in particular, if the differencing of the
synthetic equations is consistent with that of the trans-
port equation,?®
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