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Abstract -A study of the specfrul radius for the conrinuous form of the source iteration, diffusion 
synthelic acceleraiion, and various PL uccelera~ion merhods (L 2 I)  for anisotropically scat lering 
neutron transport is curried our via u Fourier stability unalysis. The purpose of the study is to deter- 
mine which acceleration scheme is optimum. The problem is formulated as a matrix eigenvulue pro b- 
Iem with, in general, N + I iteration eigenvalues w where N denotes the degree of anisotropy. The PI 
acceleration merhod is determined as the most e fficien f P, approuch for fhe cases of linearly und 
quadra~iuaily anisotropic scatrering. 

I. INTRODUCTION 

The diffusion synthetic acceleration1-6 (DSA) 
met hod has been extensively used to accelerate the 
slow convergence cf the source iteration (SI) method 
for neutron transport problems in optically thick re- 
gions with scattering ratios c near unity. Stability dif- 
ficulties of early versions of the DSA method have, to 
some extent, been resolved4g5 by developing difference 
schemes of the diffusion equation that are consistent 
with the difference schemes of the transport equation. 
Very recently, Miller and Larsen7 studied the spectral 
radius of general PI. acceleration methods and found 
that for problems with isotropic scattering, DSA (or 
PI acceleration) is the optimum P, approach. The 
general case of  anisotropic scattering was first consid- 

ered by c or el.* He found experimentally that a P,  
acceleration scheme, which now is not equivalent to 
DSA, is superior to DSA. 

In this paper, we study the effectiveness of P, 
acceleration of the iteration process for solving the 
transport equation with two coefficients of anisotropy 
and L 5 3. Our study is restricted to the analytic trans- 
port equation with no angular or spatial discretization. 
Our approach is based on a Fourier analysis to deter- 
mine the spectral radius of the iteration operator. 
Without a doubt, the use of the infinite medium con- 
stant cro~s~section problem as the model problem for 
the Fourier analysis is highly idealized. However, pre- 
vious experience with DSA indicates predictions of the 
spectral radius that are quite close to the numerical 
convergence rates of more realistic probIems. For 
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example, our present results for the linearIy and quad- 
ratically anisotropic scattering cases provide theoret- 
ical evidence of the empirical results of   or el.^ It is 
important to note that the present Fourier analysis 
leads in general to N + 1 distinct ejgenvaluss and 
eigenvectors, where N is the order of anisotropy . The 
number of accelerated moments play5 an important 
role in the behavior of these eigenvalues as a i'unct ion 
of the Fourier frequency. 

We begin our analysis in Sec. I1  with a study o l  
the S1 method. We continue in Sec. [ I 1  lvilh the dzvel- 
opmenr of a PL acceleration method assuming two 

and 

1 ' I  
( =  P,,(p)t(' i1/2)(~ 3 C1 ) d p .  ( 5 )  - - 1  

These equations are obtained by subtracting Eqs. (1) 
and (2) for successive iterates. We use the Fourier 
mode ansatz: 
q, ( I + '  :21 ( x , p )  = ~ k ( ~ ) e x p ( i X x )  , ( i  = j i q )  (6) 

and 

3A1 ' (x )  = w i b , e x p ( i X x )  , (7) 
degrees of a n i s a r o ~ ~ .  I n  addition, p r z  where is the eiEenvalue carrerponding the Fourier 
sent numerical resulls for the theoretical convergence 
rates of certain PL acceleration methods. Section IV frequency X. Substituting Eqs. (6) and (7) into Eqs. (4) 

contains results and ~eneral  remarks about the perfor- and ( 5 ) ,  we obtain 

rnance of PL acce~e~ation schemes in all ~ a k e s i a n  r V  
geometries. Finally, in Sec. V ,  we give a brief sum- g ( p )  = - C ( 2 n + l ) f n P n ( ~ ) b n  (8) 

I + iXP n=O mary and conclusions. 
and 

11. S I  METHOD 
db,, = [k c(2m + I )f,, 

The ST method can be Jcscribed by the equations I U = O  

Pn(CL)P,,(r) d p ] b ,  , 
x S-, 1 + ihp 

and c 
A,,,,(h) = - (2m + J)f,v 

2 . .  1 d , (2)  

where l + i A p  d~ * 

$ ( x , ~ )  = particle density O c _ n , m s N ,  (10) 

f, = n'th coefficient of anisotropy lhen we obtain the matrix eigenvalue problem 

Pn(p) = n'th Legendre polynomial 

IF, (XI = n'th Legendre moment of 4 ( x , p )  de- 
fined by Eq. (2) By setting X = 0, we can easily deduce from Eqs. (10) 

I = iteration index. and (1  1) that w, (0) = cfi, 0 5 i 5 N. Note that, in 
generat, there are N + 1 distinct eigenvalues and eigen- 

To determine the spectral radius of the SI scheme, we ,.,,tors. To obtain the spectral radius 
define 
i p U + ~ i X  ( x , ~ )  $ ( / + I  2 )  ( -v,p) - + { I - I ~  (3a) p = max sup I w , (  A) [  

OsisN A 
(1 2) 

and of the iteration map, an upper bound for 1 ~ ~ 1  as a 
+ ( I + ] )  = , p c f + l l  ( . r )  - co(l) , (3b) function of the parameter h must be determined. 

To dcmonstrnte s ~ m e  explicit results, we consider 
and apply a separation of variable ~ o u r j e r  mode 501~- here the special case of linearly anisotropic scattering. 
tion to the equations We find 
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where 

A = tan-' ( X ) / X  , (14) 

and the expressions for the two eigenvalues are 

Plots of w versus h for the SI  method are given in 
Fig. 1 for c = I and for f, = 0 (isotropic scattering) 
and f l  = i .  Both "anisotropic" eigenvalues are real for 
0 5 X 5 1.93 and are complex conjugates for A 2 1.94. 
In Fig. 1 ,  we plot the absolute value of X for X I 1.94. 
The two eigenvalues corresponding to the anisotropic 
case are less than the jsotropjc eigenvalue for all val- 
ues of A > 0. Since for a finite system the flat h = O 
mode cannot be present, we may argue that the con- 
vergence of the linearly anisotropic problem should be 
slightly faster than  for t he  jsotropic problem. How- 
ever, for the model problem under consideration, we 
find the absolute maximum value of a11 w ,  which oc- 
curs at A = 0, to be independent of fl and equal to c. 
Hence, for c (arbitrarily) close to unity, the S1 method 
will converge (arbitrariIy) slowly. 

111. THE ANlSOTROPIC P,, 
ACCELEKATlON METHOD 

I I I .  A. Formulation of the Scheme 
orid Stability Analysis 

For simplicity we restrict our study to the transport 
equation with quadratically anisotropic scattering. 
w illiamsq has derived a synthetic acceIeration scheme 
with highly forward-peaked scattering. However, be- 
cause his derivation was somewhat peripheral to the 

Fig. 1. Plots of LO versus X for the S1 method with 
isolropic scattering (upper curve) and linearly anisotropic 
scattering (lower curves). 

main purpose of this paper, we present again a sjrni- 
lar P, acceleration analysis. 

The form of the equation under consideration here 
is 

where the terms are as defined earlier. Formulating the 
desired acceleration scheme, we take the first K + I 
Legendre's moments of Eq. (16) to obtain the set of 
equations 

and we now define the acceleration equations as 

and 

where fk = 0 for k > 2. Subtracting Eqs. ( 16) and (18) 
for successive values of I, we obtain the equations 

and 

which are amenable to Fourier analysis. Proceeding as 
before, Eqs. (6) and (7) are introduced into Eq. ( 1  9) 
to find 
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and into Eqs. (20) to obtain the vector equation 

where 

D = 

with k = 0 , 1 , . .  . , K ;  b T =  (b,,.hl ...., h A )  and V T =  
(0,0,. . . ,0,1) are two constant (K + 1 vectors; and sufficient to obtain the convergence rate of the accel- 

I eration scheme. On the other hand, the choice of 

G K + ~  = 'J PK+I ( p ) e ( r )  dr  - L < N js reasorlable since from a ~'omputational point 
2 - I  of view it is desirable to solve a small system of PL 

we now recast the expressioll for G*.+, a more equations. In the  fallowing section, we evaluate the 
convenient form. JZZ. (ZI for ( we computationa1 effectiveness of different P, accelera- 

obtain tion methods. 

where F is a row vector with components 

where F, = 0 for n r 3 because f,, = 0 for n r 3. 
Equation (22) can now be written as 

with 

It is obvious that this is an eigenvalue problem where 
w are the cigenvalues of A and b the corresponding 
eigenvectors. However, we note that according to 
Eq. (25), A is the product of a column vector times a 
row vector, and because of that its rank is equal to 
unity. Hence, we obtain one dominant eigenvalue 
while the A' remaining eigenvalues are identically equaI 
to zero. In fact, by multiplying both sides of the vec- 
tor [Eq. (24)j by F, we deduce the following scalar 
equation: 

111. B. The ,Specrral Radilts of Certain 
PL Arcelerarion Algorithms 

In this section, we develop closrd form expressions 
for the eigenvalues of certain orders of PL accelera- 
tion for the worst case of c = 1.0, and we then numer- 
ically solve these equations. We start our analysis with 
the evaluation of the convergence rate of the classical 
DSA scheme in the case of quadratically anisotropic 
scattering. The DSA method for the analytic transport 
equation is now described by Eq. (16) coupIed to the 
diffusion equation: 

while the first and second moments of the angular flux 

and 

d=-- K +  ' iXFD-lV . respec~ively, are not accelerated. Performing the same 
2 K +  1 (26) Fourier stability analysis on this method as we applied 

in the PL acceleration method in Sec. II  I .A, we obtain 
We  conclude that in general a P, acceleration ,, = 0 ,,d 

scheme with L 3 N, where N denotes the degree of 
anisotropy, sets N of its N + 1 eigenvalues equal to 

- 1 [ P  k (~~-4~)l,'~l , 
zero. Thus, study of the one nonzero eigenvalue i s  w2,3 = 2 (29)  
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where 

and 

with A defined in Eq. (14). From Eq. (29) it is easy to 
show that as A approaches zero w2 = f, and w, = fi. 

Next we consider the P, acceleration scheme, 
which is described by Eq. (16) and the acceleration 
equations 

and 

(34) 
for P3 acceleration. Both Eqs. (33) and 134) are inde- 
pendent of fi . 

We have numerically solved Eqs. (291, (321, (331, 
and (34), and Figs. 2, 3a, and 3b provide some insight 
into the behavior of w as a function of X. Table I con- 
tains the spectral radius for each of the four itera- 
tion-acceleration schemes under considerat ion. The 
inefficiency of the P2 acceleration method is easily 
observed. In fact, this algorithm becomes unstable and 
nonconvergent when f2  # 0. It seems that the histori- 
cally bad performance of the even order PI, approxi- 
mations'' becomes even worse in the case of highly 
anisotropic scattering. 

I 

(31b) -.. . ----.. .. 
--. p3 .......----.. - ... ..-- ... .... ... : 

and Eq. (28b). A similar Fourier at~alysis yields wl = 
w2 = 0 and - 0.0 

X 

The last expression for the nonzero eigenvalue (c  = 
1.0) is independent off , ,  and w3 = f, when X = 0. 

Finally, we consider PL acceleration methods wjth 
L = 2 and 3. The formulation and stability analysis of 
these acceleration schemes can easily be deduced from 
Sec. 1II.A. The eigenvalues for these methods, which 
are obtained directly from Eqs. (24) and (26), are 
w 1  = m2 = 0 and 

for P2 acceleration, and w ,  = wz = ~3 = 0 and 

Fig. 2 .  PLots of w versus A for various orders of P ,  
acceleration wjth IinearIy anisotropic scattering. 

TABLE I 

Spectral Radius of Anisotropic Synthetic 
Acceleration Met hods 
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Acceleration 
Method 

fi 

fi 

DSA 
PI 
pz 
p? 

0.0 

0.0 

0.2247 
0.2247 
0.8 
0.1108 

1 
J 

0.0 

0.3562 
0.2247 
0.8 
0.1108 

0.2 

0.4140 
0.3147 
1.25 
0.1445 

0.4 

0.4972 
0.4261 
2.0 
0.1806 
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and P,  ( p )  and P, (7) are the m'th and n'th Legendrc 
polynomials, respectively. 

Formulating the PI acceleration scheme, we retain 
Eq. (35) and derive a set of synthetic equations by tak- 
ing the zeroth and the two first moments (with respect 
to p and q) of Eq. (35). To carry this out, Eq. (35) is 
multiplied first by (1 - p 2  - q 2 )  - and then succes- 
sively by Po(p)Po(v), Pl(p)Pg(q), and P o ( P ) P I  (71, 
yielding 

and 

We rectrqt the transport and the acceleration equations 
into the following form: 

and 

with 
,p 0 + 1 1 2 )  

(x*Y, P ,  r l )  

- - $ ( I +  ( . T , Y , ~ * V )  - $ ( i - l ' z )  ( x , y , ~ , q )  

and 
( 1 )  @ $ Z 1 ) ( x , y )  = v;;;'' - 'Pmn - 

To determine the spectral radius of the PI scheme 
described by Eqs. (35) and (37), we introduce 
q, [ I +  1/21 I ~ , Y , P , ? )  = L J I ~  (~,v)exp[ih(x8, + Y!,)I , 

( =  ) (40a) 

and 

where A = h(B,,B,) with 8: + 0; = 1. Substituting the 
ansatz, Eq. (40), into Eqs. (38) and (39) resuIts in 

and 

w [ i ~ O x b l f l + i h O y b ~ ~  + (1 -c)booJ = O  . (42a) 

respectively, where 

Gm,, = L[prnI~)pn(~)g(~l*~)I . 

Thus, we have a system of three equations, so, in gen- 
eral, for each h there are three distinct eigenralues and 
eigenvectors. After some routine manipulation, we ob- 
tain w l  = w2 = 0 and 

The integrals in the  explicit expression for w3 can be 
evaluated analytically to yjeId 

finally, for c = 1 we get 

where A is as defined earlier. The point to be stressed 
here i s  that Eq. (45) is independent of f l  and i s  iden- 
tical to Eq. (32) for fi = 0, which describes the one- 
dimensional PI acceleration method. Similar results 
cat1 be obtained for various orders of P, acceleration. 
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This analysis shows that plane wave solutjons of 
the x,y or x,y,z exact transport equation must reduce 
to the solution of the slab geometry equation. Thus, 
for the analytic transport equation, P, acceleration 
methods must perform equally well (or poorly) in all 
Cartesian geometries. We conclude that in multidimen- 
sional geometries the PI acceleration remains the pre- 
ferred algorithm in order to obtain good acceleration 
in transport caIculalions with linear and quadratic 
anisotropy. 

V .  CONCLUSIONS 

In this paper, we have deveioped a Fourier stabil- 
ity analysis to evaluate the convergence rates of the SI, 
DSA, and PL acceleration methods in their continu- 
ous form for the case of anisotropic scattering. The 
problem is formulated as an eigenvalue problem with, 
in generaI, N + 1 iteration eigenvaIues w ,  where N 
denotes the degree of anisotropy. By studying various 
PL acceleration schemes, we proved that the perfor- 
mance of the DSA method is degraded as the scatter- 
ing becomes more forward peaked, but the DSA 
scheme is significantly improved if one accelerates 
both the zero and the first angular moments. In fact, 
we found, from an overall computational point of 
view, that this P1 acceleration method is the most 
efficient P, approach for the cases of linearly and 
quadratically anisotropic scattering in all Cartesian 
geometries. However, Table I shows that the spectral 
radius of the P1 acceleration method also increases 
for increasing anisotropy. We note that for the worst 
case under consideration (f, = \, f2 = 0.4) the P, and 
P3 methods are competitive. Because of this, higher 
order acceleration schemes may be competitive when 
the scattering is more forward peaked (N > 2) .  Our 
conclusions strictly hold only for the analytic PL ac- 

celeration methods. However, previous experience 
with the DSA method has shown that our results are 
indicative for the associated discretized versions of PL 
accelerations, in particular, if the differencing of the 
synthetic equations is consistent with that of the trans- 
port equation. 4-6 

ACKNOWLEDGMENTS 

Work by one of the authors (DV) was supported i n  
par1 by U.S. Department of Energy Grant DE-ASOS- 
80ER 107 1 1 and National Science Foundation Grant DMS- 
8312451. 

REFERENCES 

I .  H. J. KOPP, ,Vucl. Sci. Eng., 17, 65 (1963) 

2. E. M. GELBARD and I .  A. HAGEMAN, ,Vurl. Sci. 
Eng., 37, 288 (1969). 

3. W. H. KEEI), ~V#cl. Sci. Eng., 45, 245 (1971). 

4. R. E. ALCOUFFE, Nucl. Sci. Eng., 64, 344 (1977). 

5 .  E. W. LARSEN, Nucl. Sci. Eng., 82, 47 (1982). 

6. E. W. LARSEN, TTSP, 13, 107 (1984). 

7 .  W. F. MlLLER and E. W. LARSEN, ,Wucl. Sci. Eng., 
93, 403 (1986). 

8. J. E. MOREL, Nuci. Sci. Eng., 82, 34 (1982). 

9. M. WILLIAMS, TTSP, 13, 127 (1984). 

10. W.  F.  MILLER, Jr., Nucl. Sci. Eng., 65, 226 (1978). 

NUCLEAR SCIENCE AND ENGINEERING VOL. 99 (JUNE 1988) 


