Exact numerical results for Poiseullle and thermal creep flow in a cylindrical

tube
Dimitris Valougeorgis and J. R. Thomas, Jr.

Mechanical Engineering Department, Virginia Polytechnic Institute and State University, Blacksburg,

Virginia 24061
{Received 25 April 1985; accepted 8 August 1985)

The F,, method is used, in the field of rarefied gas dynamics, to develop a complete solution for the
cylindrical Poiseuille flow and thermal creep problems. The linearized Bhatnagar—Gross—Krook
(BGK) model and purely diffuse reflection at the surface are used to describe the physical
problem. The derived set of singular integral equations is solved by polynomial expansion and
collocation. By choosing suitable F,, approximations, the solution of both problems under
consideration is accomplished with a single matrix inversion, minimizing computationa! time and
effort. The converged numerical resvlts for the flow rates and the velocity profiles are correct to
four significant figures, thus supporting the results of previous authors achieved by other

methods.

I. INTRODUCTION

Exact analysis of slip-flow problems in the kinetic the-
ory of gases, based on the method of elementary solutions,
was presented first by Cercignani.'? He adapted the method
of elementary solutions,' that originated in neutron trans-
port theory, to solve 2 number of interesting problems in
rarcfied gas dynamics, including the problem of plane Poi-
senille flow.? Cercignani later considered cylindrical Poi-
seuille flow and presented results based on a direct numerical
approach to the integral form of the Bhatnager-Gross-
Krook (BGK) mode!® and on a variational technique.* The
method of elementary solutions was used by Ferziger® to
derive analytical results for the cylindrical Poiseuille prob-
lem in the near-free-molecule and near-continuum regimes.
This work was extended by Loyalka® to the thermal creep
problem in a cylindrical tube, indicating that earlier results
of Sone and Yamamoto’ were in error. In 1975, Loyalka®
presented a first complete solution of the thermal transpira-
tion problem in plane and cylindrical geometry within the
approximations of the BGK mode] and Maxwellian bound-
ary conditions. These results, obtained through numerical
solution of the integral form of the particle transport equa-
tion, were in good agreement with earlier work by Cercig-
nani,* while more recently reported variational results®'!
for the Poiseuille fow problem appeared to be inaccurate {off
by 109%-15%). Loyalka’s work was extended in several re-
cent papers'? for both plane and cylindrical geometry and
a variety of collisional models. Numerical results were ob-
tained and compared with experimental data. However, nu-
merical resnlts that can be considered numerically “exact”
were provided in plane geometry only."* Loyalka, Petrellis,
and Storvick' used the method of elementary solutions to
derive Fredholm integral equations for Couette, Poisenille,
and thermal creep flow problems with the Maxwell diffuse-
specular boundary conditions. By iterating these equations,
they provided highly accurate numerical results in plane ge-
ometry. No similarly accurate results were reported for the
cylindrical case.
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Quite recently, Siewert, Garcis, and Grandjean'™ used
the F,, method'” " to compute highly accurate flow rates for
Poiseuille fiow in a plane channel. These results agreed with
those of Loyalka, Petrellis, and Storvick!* to five significant
figures even though they were computed with 2 relatively
low-order approximation. The Fy, method has been ex-
tended to cylindrical geometry for neutron transport prob-
lems by Thomas, Southers, and Siewert?® and Siewert and
Thomas.?!3?

In this paper we report application of the F, method to
the problems of Poiseuille flow and thermal creep in a cylin-
drical tube and provide highly accurate resnlts within the
approximation of the linearized BGK model and Maxwell’s
diffuse boundary conditions. Our converged numerical re-
sults, which we believe to be accurate to within +4 1 in the
last significant figure shown, are in agreement with those of
Loyaika® to within two to four significant figures. The prin-
cipal value of these results is as a test of the accuracy of
solution methods used previously for the BGK model, some
of which have recently been extended to higher-order mod-
¢ls and models for polyatomic gases'**¢,

Il. BASIC ANALYSIS
Following Ferziger® and Loyalka,® we consider the inte-
gral equation

-2 "4 | v (S 2o

+[ iz, (=) at | + Tl 1)

where I, and K, represent modified Bessel functions of the
first and second kind, respectively. The function Z (r) is relat-
ed to the velocity profiles in the Poisenille (P ) and thermal
creep (T') problems through®

Z,(n=+r [v,{r} +1) 2}

and
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Zn=+7 [vrrin} + 1] (3)
where

Verlr)= plr] — vrlr). 4)
In Bg. (1),
while
Yrr(’)=—‘+L due~¥ [.E‘Ko i _‘
+J:AIK,, ; I, ; dt]. {6)

Performing the integration over 7 in Eq. {6) and using a
standard identity for the Bessel functions,?® we find

A (;"—) X, (f) eFdu ()
If we define™

#, p}—x.,( ) [ zem(L )

r 1z )Ko dt. {8)
and differentiate twwe, we find that ¢(r, p] must satisfy the
integrodifferential equations

(Bé, N, )= — 772, (2
and

- _y7 Ta (YK, (B) e
B¢Wr= — 2 1R [ pro(#)x,(#)e du.

(10)
Here the subscripts P and PT have the same meanings as in
Egs. (2} and (3), and the operator B is defined as

¥ = (25 +'§—-—‘—)ﬂ r, )

+ﬁJ; firpe=* ffj— (1)

It is also a consequence of Eq. (8) that both &,(r, u) and
$»rir, 41} must satisfy the boundary condition

X R\ =
K:(p)ﬂk.#) +#Ko(#) 3 (ru) - =0 (12)
At this point we find it convenient to introduce

Yir, ) = éprln p)

— N /2R p°K\(R / pMolr/ ), {13)
80 that Y {r, 1) is the solution of
BYr.p)= —Ju/2, (14

which is analogous to Eg, [9), subject to the modified bound-
ary condition

i('f) Y(R, )

+ K, (f) 2 )

= —ﬁp‘xl(f). (15)

rem R 2
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Thus, both Poiseuille (P ) and pseudothermal creep (PT)
problems have been reduced to the problem of solving the
same integrodifferential equation subject to different bound-
ary conditions. In addition, both &,(r, ] and ¥ {r, s} clearly
must remain bounded for 7 — 0 for all values of u. The gen-
eral solution of Eq. (9) or Eq. (14) that satisies this condition
can be expressed in terms of the elementary solutions as

X =t + [ @ sems(-tm

x1, (%) dg'] +glr, i) (16)

where X (r, u) represents @, (7, u} or ¥ {r, ), Co and C{£ } are
expansion coefficients to be determined, and

S =PVE/E—pl+ AEVE—p) 1)

with?
— ° I3 -

1(5)_&[\{;+J-_-Pv(t_§)e d:]. (18)
In Eq. (17), 6 {x) represents the Dirac delta functional and the
Pv indicates that integrals are to be interpreted in the
Cauchy principal-value sense. The particular solution

ginp) = —(r/8 pXP — R + 43 (19)
may be verified by direct substitution into Egs. (9) or (14).

MII. THE £, SOLUTION_

Cercignani' proved orthogonality properties for the ei-
genfunctions f (£, u2), £6{ — o, ),andf, = 1. Weuse these,
in the manner explained by Thomas, Southers, and Siewert®

to derive the singular integral equations
[ trem—re—mfp+e i ji} i’,ﬁ%‘)
Xé»(R, ) e—_:z—dﬁ = 35— (20)

KR/ 1) e ¥dy _ 7w
L KR ek S = 2, @)

for the Poiseuille problem. Similarly, the function ¥ {r, z) is
seen to satisfy the singular integral equations

© T IR 7€) KR / )
[C1rem—re-mu+s k)
e *du =ﬁ_££1’0[3/§}

#’ 2 I{R/E)

x [ Lrem—re—m 2{’;’;‘; wedu (22)

X Y (R, p)

and

= KR/ p) i"‘i
KR/ ) Y(R, p) dp

TR _ 7 _P_) 3¢ 4
=% .L KR/mh e @)

We substitute the two F), approximations,

8.8, = o (R)1,(2) 5 Ao 24)

a=0
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Y(R,p) = —-‘(2—;#‘+#K’o (f)!. (%) S B,

into Egs. (201(23) to find
> LR /§) -7
3 (e6)+¢ b=, g

L I{R/gl i
N R
EDS,A, =T, {27
IR/E) ) o Ng _ T
S(ner el ens 2, o
and
S 5., —% (29)

The functions D,, E,_, and S, are defined as
D..(;}=f LFn) ~ 6 — )]

XK, (f) 1, (%) ue e dy, (30)
E€)= [ Uen—ré-u
XKo(‘f") (i)p‘e-“‘du, - B31)

s. -=L x. ) e+ d. (32)

Substituting Eqg. m] fou'f[{’, ), we find that D_(£) and
E_(£) may be computed for £e{D, o), from the explicit for-
mulas

p.er=t=x (Fn (D) (7 ¢ ,::;)

g-.[ K(R/EMIR /€)Y — K\(R /ul (R /p)
§—n

corasicsr [ B ()2
e[ 5B

a—l

X 3 gt (= 1P e  dy,
E.€)

m=0 03
- (B)n(8) e[ £
x

and

E+n )_gﬁl

= KR /EML(R /8) — KR /p)l (R /p)
§—p

etasioire [ w (2)(2)
- [w(En )

XF WE L (- 1P Nl (34

m=10
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or can be readily generated from the recursion relations
D.¢)=¢°D, .}

[ k(B Eerre o

E{&)=§"E, _,()

s (B (2

Starting values may be obtained from Eqs. (33) and (34). We
now have N + | unknowns A, a =0,1,..., N for the Poi-
scuille flow problem, and B,,, @ =0,1,..., N for the thermal
creep problem. Evaluating Eqs. (26) and (28) at N distinct
values of £6{0, oo ) 1eads to a system of N + 1 linear algebraic
equations in each case:

and

LiR /55) ot
E 208 D, ) ) A =2,
ago( olfs) + £a 1R /%) (5:]) 3
(37
B=12,..N,
and
$ s.4.=2%, 38)
for the Poiseuille problem, and
iR /&) _at
(5070 1R /&) D.) 2 =,
39)
A=12,.N,
and
> 5B =2, o)

for the “PT " problem. It is important to note that because of
the forms {24) and (25) for the Fyy apyroaimation, the systems
(37) and (38) and {39) and (40} are identical except for the
right-hand sides. Thus, the solution of both sets is accom-
plished with a single matrix inversion. These equations may
then be solved straightforwardly to find the required con-
stanis4_, B, ,a =0, i, ..., N and consequently yield explicit
results for ¢, (R, 1) and ¥ (R, ) through Eqs. (24) and (25).
These results may, in turn, be used to obtain flow rates and
velocity profiles in terms of the expangion coefficients C, and
C{£) or surface quantities only.

V. MACROSCOPIC QUANTITIES

Using Egs. (1), {2), and (8}, the velocity profile for the
Poiscuille problem may be expressed as

win =2 [ byt d oy
7 7
and the volumetric Sow rate as
‘ R
Q=23 _[ vpirirdr. (42)
If we define
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buiri= [ b purer )
B
and take moments of Eq. (9), we find
=(R_1), 81 __2 dé,
Q"(«t )+r(R¢2{R] ,,.)

R R? dr
{44)
which may be written as
R 1
Ll ( L‘[‘Rﬂk’“dﬂ
_2_ KR / p) - g ] 45
+R1.[] xom/p;’" Hlue ], 1)
afier application of the boundary condition {12).
By a similar procedure we find
=£__.L i(l.[-j’ﬂ -5
Cor + mT7\xr {R,p)e™" du
i GKI(-R/”}YR —#’d
+ 27 KR/ ) (R, ple™* du
L 37 (" KR/ p) s_”) "
tRi) K’ ) o)

Finally, we substitute the F,, approximations given by Eqs.
(24) and {25) into Eqs. {45) and {46) to express the flow rates
simply in terms of surface quantmes as

0 =5-L+2% 4

T awm0

3 Ll
+ax [ m () (e e ]

i B @ @

[0 Eerea].

Qr=0r — Qs {49)

We can also show straightforwardly that the velocities at the
surface are given by

”’(R)_—,z."uA .[ (ﬁ)l‘ (ﬁ)

Xpu"le™* du, (50)
and
R R
k)= 2 3 5. K (e} ()
xXp* " le=" dy, {51)
where
VplR) =vp(R ) — vpr(R}). {52)
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For a complete solution of the problem we need the
functions @, (r, u}and ¥ (r, g2) for all 7, and thus we proceed by
establishing the expansion coeflicients C (¢} and Cp. Full-
range orthogonality' may be used to obtain

Cél={IR/EWNEN’
X(L- U@t#} _f(g'_#n

xR p " dp- 2, (53)
u 2
where
NE)= £’ (2R HE) + o870~ ¥), (54)
and
Co= 3‘f + —J%J; $r(R, e ™ ds. (55)

Substituting the Fj; approximation (24) into Eqs. (53) and .
(55) yields

ce)=[r(F)re)] (3 are)-F) 1o
and

N
Co= 3‘f +X 3 4R, (57

& -

)

where

R, = L’ X, (:% 1, (-ﬁ_) a e # gy, (58)

The velocity profile v,(r) may be expressed in terms of
the F), coefficients. By substituting the general solution giv-
en by Eq. (16) into Eq. (4]) we obtain

v,{r)=ux=—r’l
L Ci b )ds‘——- (59)
We similarly obtam v,-(r) through
vl = (R? =)+ S2
N =
2 [~ r 1
+7.;L C(f)fo(?)dg—:'s (60)
and Eq. {4}

Clearly, alternative expressions for 0p, Gr, (K ), and
v7(R ) can be derived in this same manner and used as nu-
merical checks for the previous expressions.

V. NUMERICAL RESULTS

For a given value of i we first choose a set of collocation
points {£,} such that 0 < £, < -+ <&y < . We have found
the positive zeros of the Hermite polynomials of degree 2N to
be an effective choice. We thea compute the functions
D, (¢s) and E_ (£,) from Egs. (33) and (34) or Egs. (35)
and (36} and the function S, from Eq. {(32). To find the
desired values of some of these integrals requires the use of
PHospital's mle when & = 4. Ferziger® has suggested a

D. Valougeorges and J. R. Thomas, Jr. 426




TABLE 1, Convergence of the Poseuille flow rate 0,(R ).

Order of the approximation Converged
R 4 3 12 16 F.4) 2 24 26 28 resuls Ref 8
0.000] 1.3038 1.5038 1.503¢8 eur
0.001 1.4995 1.4995 1.4995 1.5013
0.01 1.4760 1.4760 1.4760 1.4763
0.02 1.4597 1.4597 1.4598  1.4398 1.4598 {4601
0.03 1.4474 1.4475 L44TS L4475 14475 1.4475 1.4475 1.4473 1.4476 1.4476 14476 1.4481
0.04 1.4375 1.4375 1.4376  1.4376 14377 1.4377 1.4377 1.4384
0.05 1.4292 1.4293 1.4293 1.4294 1.4294 1.4295 1.4293 1.4295 1.4303
0.07 1.4159 1.4161 14)62 1.4163 14164 L4164 14165 14168 L4165 14175
0.09 L4057} 1.4060 1.4062  1.4063 1.4064 1.4065 1.4065 14066 1.4066 1.4066 1.4077
0.1 1.4015 1.4018 14020  1.4022 14024 1.4024 1.4025 1.4025 1.4026 1.4026 14026  1.4037
0.3 1.3715 1.3730 13739 1374 1.3748 1.3750 1.3751 1.371%2 1.3753 1.3754 1.3754 1.3739
0.5 13819 1.3842 13852  ].3848 1.3862 1.3863 1.3864 1.3864 13864 1.3863
0.7 1.4066 1.4090 14099  1.4103 1.4104 1.4105 1.4i0% 14105 1.4101
a9 14384 1.4405 14411 1.4413 1.4413 1.4413 1.4408
1.0 1.4359 14577 14582 14583 1.4583 1.4583 14578
1.25 1.5027 1.503% 1.5041 1.5041 1.5041 1.5035
1.5 L.5524 1.5531 1.5532  1.5531 1.5532 1.5526
20 1.6574 16576 1.6376 16376 1.657)
25 L7670 1.7671 1L.76711 L7 1.7672 1.1672 1.7672 1.7667
10 1L.E798 13799 1.8799  1.B800 18800 1.8800 14796
15 1.9548 1.994% 19549 19950 1.9950 19950  1.9548
4.0 21114 21115 21116 21116 2111& 21117
5.0 2.3481 2.3482 23483 23483 23423 2.9
6.0 2.5880 1.5881 2.5882 25882 2.5882 2.5%06
1.0 283005 283017 283021 283022 283024 283024 1.8302 213M6
9.0 331835 13)847 331850 33185} 331853 3.3185) 33185 a9
10.0 - 156394 356405 356408 356409 356411 356411 3.5641 35791
10G.0 260215 260216 260216 26021 .
TABLE II. Convergence of the thermal creep flow rate @{R }
Order of the spproximation Converged
R 4 ] 12 16 20 2 24 26 pi results Rei. 8
00001 07513 0.7515 0.7513 e
0001 D456 0.7466 0.7466 0.7466
0.0 0177 onmn onn QN7
a2 0.6956 0.6936 - D.§956 0.6958
0.03 0.6777 0.6778 D.6778 0.6778 0.67%0
0.04 0.6624 Q.6624 0.6624 0.6625 0.6625 0.6625 0.682%
0.05 D.56488 0.5489 0.6489 0.6489 0.6489 0.6489 0.6450 0.6490 0.6490 0.6491
0.07 0.6253 0.6254 0.6255 0.6255 0.6256 0.6256 0.6256 0.6261
0.0% 0.6054 0.5055 0.60%6 0.6056 0.6057 0.6057 0.5058 0.6058 0.6058 0.6063
Q0.1 0.5964 0.5965 0.5966 05967 D0.5967 0.5968 0.5968 0.5968 0.5973
03 0.4306 0.4312 D.4R15 0.4817 0.4819 0.4319 0.4820 0.4820 0.4821 0.4821 D.4823
0.5 0.4155% 04162 04166 0.4168 04169 04169 G470 0.4170 04170 0.4169
0.7 0.3702 0.3709 03711 0.3112 0.37113 0.3713 0.3713 0.3713 0.3712
0.9 0.3357 0.3362 0.3363 03364 0.3364 0.3364 0.3363
1.0 0.3211 0.3216 032117 0.3217 03217 0.3216
1.25 0.2903 0.2906 0.2906 0.2906 0.2906 02906 0.2907 0.2907 0.2907 0.2906
1.5 0.2654 0.2655 0.2656 0.2656 0.2656 0.2655
0 0.2270 022N 0.2271 02271 0.2271
25 0.1986 0.1986 0.1936 0.]987 D.1987 0.1987 0.1987
30 0.1766 0.1766 0.1766 0.1767
s 0.158% 01590 0.15% 0.1590 0.1591
40 D.1445 0.1445 0.1445 0.1447
50 0.1222 0.1222 0.1222 0.1224
6.0 0.1058 0.1058 0.1058 0.1060
7.0 0.0931% 0.09321 0.09322 0.09322 0.09322 00934
8.0 0.07521 0.07522 007522 0.07522 0.07523 0.07523 0.07523 0.0755
100 0.06856 0.06857 D.06858 0.06858 0.06858 0.0683
100.0 0.(07581 0007582 0.007583 0.007583 0.007583
[ Valougeorgis and J. R. Thomas, Jr. 427

427 Phys. Fluids, Vol. 20, No. 2, February 1086




TAPLE 111 Velocity alip at the wall.

TABLE IV, Velacity profiles for R = 2.

— e — e —
Poiscuiile flow Therma) creep flow Radius Puisenille flow ‘Thermal creep flow
x vpiR) vk ) Present Present
r work Ref 8 work Ref 8
0.000! 0.5635{ — 4} 0.2817( — 4}

0.001 0.561% — 3) 0.219% - 3 0.000 2.3533 vee .2970 e
o] 0.5484{ — 2) 0.2647 - 2) 0.004 2.3533 2.3331 0.2970 02970
0.03 0.1594( — 1 0.7340( — 2} 0.026 2.3531 23529 0.2970 0.2970
0.0 0.2597( - 1} 0.1151(— 1) 0.070 23518 2.35)6 0.2969 0.2969
0.07 0.3570{ — 1) 01534 — I 0138 2.3476 2414 0.2966 0.2966
0.1 04987 — 1) 0.2044 - 1) 0.21% 2.3381 23381 0.2959 0.2958
95 0.2167 0.5957 = 1} 0321 21212 21210 0.2946 0.2946
10 0.4049 0.8032 — 1) 0437 2.2934 22832 0.2925 0.2925
20 0.7659 0.967% — 1) 0.567 2.2521 22522 0.2893 02853
0 011200+ 1) 0.102? 0.706 21958 2.1958 0.2843 0.2844
40 Q147 + 1) 0.1054 0.851 212% 21229 0.2788 027t
50 0.1824{ + 1) 0.1068 1.000 20329 203128 02730 02710
70 0.2529( + 1) 0.1081 1.149 15262 1.9261 0.2613 0.2613
100 0.358% + 1) b.1088 1294 1.8050 1.9044 0.2495 0.2494
1000 0.3541( + 2} 0.1094 1.433 1.6710 16703 0.2354 0.2354
— 1.563 1.5273 152712 0.2190 0.21%0
1.679 1.3806 1.3795 0.2006 0.2005
178 12326 33713 0.1802 01802
. . . 1.868 1.09138 1.0906 0.1585 0.1583
method for evaluating S, analytically. In the Appendix, we 1530 0.9624 0.9609 0.1364 0.1364
show how this can be extended to all S, for even o. This 1974 0.8550 0.8523 0.1160 o
apalysis was used successfully as » benchmark for testing the 1.99% 07845 0.7733 0.101] 0.0995

sccurscy of the pumerical results obtained by Gaussian qua-
drature.

Next, the linear systems (37) and {38} and {39) and (40}
are solved for the Fy, coefficients 4, and B,, & = 0,1, ..., N,
which arein turn used in Eqs. (47)-{52), {56}, and (57) to yield
the quantities of interest.

In Table I and Table I the convergence rate of the F),
metbod is illustruted and the converged results for the flow
rates 0,(R }and O, (R ) are compared to thoee of Loyalka,*
where R is the inverse Knudsen number, We consider the
converged results tobe correct to + 1in the last digit shown.
The agreement with Loyalka® appears to be best in the
Knudsen number range 0.02 < R < 3.0, although our most
accurate results are achieved outside this range. Considered
over the complete Knudsen number spectrum, the agree-
ment rapges between three and five significant figures.

Table ITI contains values for the velocity slip at the wall
for both Poiscuille flow and thermal creep fiow. To our
koowledge these results have not been previously reported.
We belicve the results 1o be correct to within 1 in the
fourth significant figure.

Finally, in Table [V we compare our results for the ve-
locity profiles for R = 2 in both Poiseuille flow and thermal
creep flow to those of Loyalka ® The degree of agreement is
quite similar 1o that found for the flow rates 0, and Qr,
except very close 0 the boundary where the agreement
drops to one significant figure. Again, we consider our re-
sults correct to the number of significant figures shown.

Vi. CONCLUSIONS

The F,, method has been used successfully to solve the
kinetic theory problems of Poiscuille flow and thermal creep
flow in a cylindrica) rube. The volumetric flow rates, velocity
slip at the wall, and velocity profiles have been computed to
an accuracy of at least four significant figures with modest
computational effort. Our numerical results spanning the
entire range of the Knudsen number indicate that previous
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work by Cercignani® and Loyalka® is accurate to within 1%.
The present analysis can be used as a benchmark for testing
the accuracy of the various numerical methods used pre-
viously for the BGK model] and in verifying new techniques
that might be developed in the future, We are optimistic
about extending this work 1o solving higher order models
and models that describe binary flows.
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APPENDIX: ANALYTICAL EVALUATION OF EQUATION
(32)

We have mentioned that the integrat {32), which can be
written as

s, = L' K, (—‘:—) I, (-E-)pﬂe-*ﬂ‘dp, b=1, (Al)

can be computed analytically, and thus we now proceed to
derive this alternative expression. It has been found that the
integrals §,,, a = 1,2,3, . can be generated by taking the
partial derivatives of S, with respect to b, through the for-
mula

Su=(- ri@| s a=1%.. (A2
ab®  pat
To initiate our calculations we nse
s.,m)_nL K, )1,(:) e— bR gy (A3)

where 1 =p/R. A method of evaluating this integral has -
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been pointed out by Ferziger,® who gave a three-term asymp-
totic expansion. We have found the complete result to be

given by
sgb)=YT 2
% 3

_ R _3
2 (lnb+2]nk+3y 3 b
_1_ - {_nl‘Rh+lbn

4 .5 (n -+ ln + P20 — 1P

—ﬂ - (_nnRh+Zbu+§
4 A (ﬂ+2)(n+1)2(n!}3

x(lnb+21n.R+3y—
n41

(A4)

| - 1

n+2 3*21 k)'
By setting b = 1 we have 5, and the use of Eq. (A2) yields
analytical expressions for the higher-order functions S,,.,
a =12, .... The computed exact results f S, @ = 2,4, ...,
30, were compared with numerical results obtained directly
through a 400 point Gaussian quadrature scheme and agree-
ment was achieved for 9 to 14 significant figures. Based on
this success, we used only the numerical method for odd
values of a.
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