Exact numerical results for Poiseulle and thermal creep flow in a cylindrical tube

Dimitris Valougeorgis and J. R. Thomas, Jr.
Mechanical Engineering Department, Virginia Polytechnic Institute and State University, Blacksburg. Virginia 24061

(Received 25 April 1985; accepted 8 August 1985)

Abstract

The F_{N} method is used, in the field of rarefied gas dynamics, to develop a complete solution for the cylindrical Poiseuille flow and thermal creep problems. The linearized Bhatnagar-Gross-Krook (BGK) model and purely diffuse reflection at the surface are used to describe the physical problem. The derived set of singular integral equations is solved by polynomial expansion and collocation. By choosing suitable F_{N} approximations, the solution of both problems under consideration is accomplished with a single matrix inversion, minimizing computational time and effort. The converged numerical results for the flow rates and the velocity profiles are correct to four significant figures, thus supporting the results of previous authors achieved by other methods.

I. INTRODUCTION

Exact analysis of slip-flow problems in the kinetic theory of gases, based on the method of elementary solutions, was presented first by Cercignani. ${ }^{1,2} \mathrm{He}$ adapted the method of elementary solutions,' that originated in neutron transport theory, to solve a number of interesting problems in rarefied gas dynamics, including the problem of plane Poiseuille flow. ${ }^{2}$ Cercignani later considered cylindrical Poiseuille flow and presented results based on a direct numerical approach to the integral form of the Bhatnager-GrossKrook (BGK) model ${ }^{3}$ and on a variational technique. ${ }^{4}$ The method of elementary solutions was used by Ferzigers to derive analytical results for the cylindrical Poiseuille problem in the near-free-molecule and near-continuum regimes. This work was extended by Loyalka ${ }^{6}$ to the thermal creep problem in a cylindrical tube, indicating that earlier results of Sone and Yamamoto ${ }^{7}$ were in error. In 1975, Loyalka ${ }^{8}$ presented a first complete solution of the thermal transpiration problem in plane and cylindrical geometry within the approximations of the BGK model and Maxwellian boundary conditions. These results, obtained through numerical solution of the integral form of the particle transport equation, were in good agreement with earlier work by Cercignani, ${ }^{4}$ while more recently reported variational results ${ }^{2-11}$ for the Poiseuille flow problem appeared to be inaccurate (off by $10 \%-15 \%$). Loyalka's work was extended in several recent papers ${ }^{12-14}$ for both plane and cylindrical geometry and a variety of collisional models. Numerical results were obtained and compared with experimental data. However, numerical results that can be considered numerically "exact" were provided in plane geometry only. ${ }^{15}$ Loyalka, Petrellis, and Storvick ${ }^{15}$ used the method of elementary solutions to derive Fredholm integral equations for Couette, Poiseuille, and thermal creep flow problems with the Maxwell diffusespecular boundary conditions. By iterating these equations, they provided highly accurate numerical results in plane geometry. No similarly accurate results were reported for the cylindrical case.

Quite recently, Siewert, Garcia, and Grandjean ${ }^{16}$ used the F_{N} method ${ }^{17-19}$ to compute highly accurate fiow rates for Poiseuille fow in a plane channel. These results agreed with those of Loyalka, Petrellis, and Storvick ${ }^{15}$ to five significant figures even though they were computed with a relatively low-order approximation. The F_{N} method has been extended to cylindrical geometry for neutron transport problems by Thomas, Southers, and Siewert ${ }^{20}$ and Siewert and Thomas. ${ }^{21,22}$

In this paper we report application of the F_{N} method to the problems of Poiseuille flow and thermal creep in a cylindrical tube and provide highly accurate results within the approximation of the linearized BGK model and Maxwell's diffuse boundary conditions. Our converged numerical results, which we believe to be accurate to within ± 1 in the last significant figure shown, are in agreement with those of Loyalka ${ }^{2}$ to within two to four significant figures. The principal value of these results is as a test of the accuracy of solution methods used previously for the BGK model, some of which have recently been extended to higher-order models and models for polyatomic gases ${ }^{12-\mathrm{sa}}$.

II. BASIC ANALYSIS

Following Ferziger ${ }^{5}$ and Loyalka, ${ }^{6}$ we consider the integral equation

$$
\begin{align*}
Z(r)= & \frac{2}{\sqrt{\pi}} \int_{0}^{\infty} d \mu \frac{e^{-\mu^{2}}}{\mu^{2}}\left[\int_{0}^{r} t Z(t) K_{0}\left(\frac{r}{\mu}\right) I_{0}\left(\frac{t}{\mu}\right) d t\right. \\
& \left.+\int_{\mathrm{r}}^{R} t Z(t) K_{0}\left(\frac{t}{\mu}\right) I_{0}\left(\frac{r}{\mu}\right) d t\right]+Y_{P, P T}(r), \tag{1}
\end{align*}
$$

where I_{0} and K_{0} represent modified Bessel functions of the first and second kind, respectively. The function $Z(r)$ is related to the velocity profiles in the Poiseuille (P) and thermal creep (T) problems through ${ }^{6}$

$$
\begin{equation*}
Z_{p}(r)=\sqrt{\pi}\left[v_{p}(r)+\frac{1}{2}\right] \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\boldsymbol{Z}_{r r}(H)=\sqrt{\pi}\left[v_{r T}(r)+1\right], \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
v_{r r}(r)=v_{r}(r)-v_{r}(r) . \tag{4}
\end{equation*}
$$

In Eq. (1),

$$
\begin{equation*}
Y_{P}(r)=\sqrt{\pi} / 2, \tag{5}
\end{equation*}
$$

while

$$
\begin{align*}
Y_{r r}(r)= & \frac{\sqrt{\pi}}{4}+\int_{0}^{-} d \mu e^{-\mu^{2}}\left[\int_{0}^{r} t K_{0}\left(\frac{r}{\mu}\right) I_{0}\left(\frac{t}{\mu}\right) d t\right. \\
& \left.+\int_{r}^{R}{ }^{*} K_{0}\left(\frac{t}{\mu}\right) I_{0}\left(\frac{r}{\mu}\right) d t\right] . \tag{6}
\end{align*}
$$

Performing the integration over t in Eq. (6) and using a standard identity for the Bessel functions, ${ }^{23}$ we find

$$
\begin{equation*}
Y_{r T}(\gamma)=\frac{\sqrt{\pi}}{2}-R \int_{0}^{\infty} \mu I_{0}\left(\frac{r}{\mu}\right) K_{1}\left(\frac{R}{\mu}\right) e^{-\mu^{2}} d \mu . \tag{7}
\end{equation*}
$$

If we define ${ }^{20}$

$$
\begin{align*}
\Delta(r, \mu)= & K_{0}\left(\frac{r}{\mu}\right) \int_{0} t Z(t) I_{0}\left(\frac{t}{\mu}\right) d t \\
& +I_{0}\left(\frac{r}{\mu}\right) \int_{t}^{\mu} t Z(t) K_{0}\left(\frac{t}{\mu}\right) d t, \tag{8}
\end{align*}
$$

and differentiate twice, we find that $\phi(r, \mu)$ must satisfy the integrodifferential equations

$$
\begin{equation*}
\left(B \phi_{p}\right)(r, \mu)=-\sqrt{\pi} / 2 \tag{9}
\end{equation*}
$$

and
$\left(B \phi_{r r}\right)(r, \mu)=-\frac{\sqrt{\pi}}{2}+R \int_{0}^{\infty} \mu I_{0}\left(\frac{r}{\mu}\right) K_{1}\left(\frac{R}{\mu}\right) e^{-\mu^{2}} d \mu$.
Here the wubscripts P and $P T$ have the same meanings as in Eqs. (2) and (3), and the operator B is defined as

$$
\begin{align*}
(B f(r, \mu)= & \left(\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r}-\frac{1}{\mu^{2}}\right) f(r, \mu) \\
& +\frac{2}{\sqrt{\pi}} \int_{0}^{-} f(r, \mu) e^{-\mu^{2}} \frac{d \mu}{\mu^{2}} . \tag{11}
\end{align*}
$$

It is also a consequence of Eq . (8) that both $\phi_{r}(r, \mu)$ and $\phi_{r r}(r, \mu)$ must satisfy the boundary condition
$K_{1}\left(\frac{R}{\mu}\right) \phi(R, \mu)+\left.\mu K_{0}\left(\frac{R}{\mu}\right) \frac{\partial \phi}{\partial r}(r, \mu)\right|_{r-k}=0$.
At this point we find it convenient to introduce

$$
\begin{align*}
Y(r, \mu)= & \phi_{r t}(r, \mu) \\
& -(\sqrt{\pi} / 2) R \mu^{3} K_{1}(R / \mu) Y_{0}(r / \mu), \tag{13}
\end{align*}
$$

so that $Y(r, \mu)$ is the solution of

$$
\begin{equation*}
(B Y)(r, \mu)=-\sqrt{\pi} / 2, \tag{14}
\end{equation*}
$$

which is analogous to Eq. (9), subject to the modified boundary condition

$$
\begin{align*}
& K_{1}\left(\frac{R}{\mu}\right) Y(R, \mu) \\
& \quad+\left.\mu K_{0}\left(\frac{R}{\mu}\right) \frac{\partial Y}{\partial r}(r, \mu)\right|_{r-R}=-\frac{\sqrt{\pi}}{2} \mu^{4} K_{1}\left(\frac{R}{\mu}\right) . \tag{15}
\end{align*}
$$

Thus, both Poiseuille (P) and pseudothermal creep $(P T)$ probiems have been reduced to the problem of solving the same integrodiferential equation subject to different boundary conditions. In addition, both $\phi_{\boldsymbol{r}}(r, \mu)$ and $Y(r, \mu)$ clearly must remain bounded for $r \rightarrow 0$ for all values of μ. The general solution of Eq. (9) or Eq. (14) that satisfes this condition can be expressed in terms of the elementary solutions as

$$
\begin{align*}
X(r, \mu)= & \mu^{2}\left[C_{0} f_{\mu}+\int_{0}^{\infty} C(\xi) f f(\xi, \mu)+f(-\xi, \mu)\right] \\
& \left.\times I_{0}\left(\frac{r}{\xi}\right) d \xi\right]+g(r, \mu), \tag{16}
\end{align*}
$$

where $X(r, \mu)$ represents $\phi_{p}(r, \mu)$ or $Y(r, \mu), C_{0}$ and $C(\xi)$ are expansion coefficients to be determined, and

$$
\begin{equation*}
f(\xi, \mu)=\operatorname{Pv}(\xi / \xi-\mu)+\lambda(\xi) \delta(\xi-\mu), \tag{17}
\end{equation*}
$$

with ${ }^{3}$

$$
\begin{equation*}
\lambda(\xi)=e^{2}\left[\sqrt{\pi}+\int_{-\infty}^{\infty} \operatorname{Pv}\left(\frac{\xi}{t-\xi}\right) e^{-t^{2}} d t\right] . \tag{18}
\end{equation*}
$$

In Eq. (17), $\delta(x)$ represents the Dirac delta functional and the Pv indicates that integrals are to be interpreted in the Cauchy principal-value sense. The particular solution

$$
\begin{equation*}
g(r, \mu)=-(\sqrt{\pi} / 4) \mu^{2}\left(r^{2}-R^{2}+4 \mu^{2}\right) \tag{19}
\end{equation*}
$$

may be verified by direct substitution into Egs. (9) or (14).

III. THE F_{N} SOLUTION

Cercignani ${ }^{1}$ proved orthogonality properties for the eigenfunctions $f(\xi, \mu), \xi \in(-\infty, \infty)$, and $f_{\infty}=1$. We use these, in the manner explained by Thomas, Southers, and Siewert ${ }^{20}$ to derive the singular integral equations

$$
\begin{align*}
& \int_{0}^{\infty}[f(\xi, \mu)-f(\xi,-\mu)]\left(\mu+\xi \frac{I_{0}(R / \xi)}{I_{1}(R / \xi)} \frac{K_{1}(R / \mu)}{K_{0}(R / \mu)}\right) \\
& \quad \times \phi_{r}(R, \mu) \frac{e^{-\mu^{2}} d \mu}{\mu^{2}}=\frac{\pi \xi}{2} \tag{20}
\end{align*}
$$

and

$$
\begin{equation*}
\int_{0}^{-} \frac{K_{1}(R / \mu)}{K_{0}(R / \mu)} \phi_{r}(R, \mu) \frac{e^{-\mu^{2} d \mu}}{\mu}=\frac{\pi}{8} R, \tag{21}
\end{equation*}
$$

for the Poiseuille problem. Similarly, the function $\boldsymbol{Y}(r, \mu)$ is seen to satisfy the singular integral equations

$$
\begin{align*}
& \int_{0}^{\infty}[f(\xi, \mu)-f(\xi,-\mu)]\left(\mu+\xi \frac{I_{0}(R / \xi)}{I_{1}(R / \xi)} \frac{K_{1}(R / \mu)}{K_{0}(R / \mu)}\right) \\
& \quad \times Y(R, \mu) \frac{e^{-\mu^{2}} d \mu}{\mu^{2}}=\frac{\pi \xi}{2}-\frac{\sqrt{\pi}}{2} \xi \frac{I_{0}(R / \xi)}{I_{1}(R / \xi)} \\
& \quad \times \int_{0}^{\infty}[f(\xi, \mu)-f(\xi,-\mu)] \frac{K_{1}(R / \mu)}{K_{0}(R / \mu)} \mu^{2} e^{-\mu^{2}} d \mu \tag{22}
\end{align*}
$$

and

$$
\begin{align*}
\int_{0}^{\infty} & \frac{K_{1}(R / \mu)}{K_{0}(R / \mu)} Y(R, \mu) \frac{e^{-\mu^{2}}}{\mu} d \mu \\
& =\frac{\pi R}{8}-\frac{\sqrt{\pi}}{2} \int_{0}^{-} \frac{K_{1}(R / \mu)}{K_{0}(R / \mu)} \mu^{3} e^{-\mu^{2}} d \mu \tag{23}
\end{align*}
$$

We substitute the two F_{N} approximations,

$$
\begin{equation*}
\phi_{F}(R, \mu)=\mu R_{0}\left(\frac{R}{\mu}\right) I_{1}\left(\frac{R}{\mu}\right) \sum_{a=0}^{N} A_{a} \mu^{*} \tag{24}
\end{equation*}
$$

D. Valougeords and J. R. Thomes, Jr.
and

$$
\begin{equation*}
Y(R, \mu)=-\frac{\sqrt{\pi}}{2} \mu^{4}+\mu K_{0}\left(\frac{R}{\mu}\right) I_{1}\left(\frac{R}{\mu}\right) \sum_{a=0}^{N} B_{a} \mu^{\sigma}, \tag{25}
\end{equation*}
$$

into Egs. $(20)-(23)$ to find

$$
\begin{align*}
& \sum_{==0}^{N}\left(E_{a}(\xi)+\xi \frac{I_{0}(R / \xi)}{I_{1}(R / \xi)} D_{a}(\xi)\right) A_{a}=\frac{\pi \xi}{2} \tag{26}\\
& \sum_{a=0}^{N} S_{a} A_{a}=\frac{\pi R}{8} \tag{27}\\
& \sum_{a=0}^{N}\left(E_{a}(\xi)+\xi \frac{I_{0}(R / \xi)}{I_{0}(R / \xi)} D_{a}(\xi)\right) B_{a}=\frac{\pi \xi}{4}, \tag{28}
\end{align*}
$$

and

$$
\begin{equation*}
\sum_{n=0}^{N} S_{a} B_{a}=\frac{\pi R}{g} . \tag{29}
\end{equation*}
$$

The functions D_{a}, E_{a}, and S_{a} are defined as

$$
\begin{align*}
D_{\mathrm{a}}(\xi)= & \int_{0}^{\infty}[f(\xi, \mu)-f(\xi,-\mu)] \\
& \times K_{1}\left(\frac{R}{\mu}\right) I_{1}\left(\frac{R}{\mu}\right) \mu^{a-1} e^{-\mu^{2}} d \mu, \tag{30}\\
E_{a}(\xi)= & \int_{0}^{\infty}[f(\xi, \mu)-f(\xi,-\mu)] \\
& \times K_{0}\left(\frac{R}{\mu}\right) I_{1}\left(\frac{R}{\mu}\right) \mu^{\alpha} e^{-\mu^{2}} d \mu, \tag{31}
\end{align*}
$$

and

$$
\begin{equation*}
S_{\infty}=\int_{0}^{\infty} K_{1}\left(\frac{R}{\mu}\right) I_{1}\left(\frac{R}{\mu}\right) \mu^{\alpha} e^{-\mu^{2}} d \mu \tag{32}
\end{equation*}
$$

Substituting Eq. (17) for $f(\xi, \mu)$, we find that $D_{c}(\xi)$ and $E_{m}(\xi)$ may be computed for $\xi \in(0, \infty)$, from the explicit for molat

$$
\begin{align*}
D_{a}(\xi)= & \xi^{a-i} K_{1}\left(\frac{R}{\xi}\right) I_{i}\left(\frac{R}{\xi}\right)\left(\sqrt{\pi}-\xi \int_{0}^{\infty} \frac{e^{-\mu} d \mu}{\mu+\xi}\right) \\
& -\xi^{-} \int_{0}^{-} \frac{K_{1}(R / \xi) I_{1}(R / \xi)-K_{1}\left(R / \mu Y_{1}(R / \mu)\right.}{\xi-\mu} \\
& \times e^{-\mu^{2}} d \mu+(-\xi)^{\infty} \int_{0}^{\infty} K_{1}\left(\frac{R}{\mu}\right) I_{1}\left(\frac{R}{\mu}\right) \\
& \times \frac{e^{-\mu^{2}}}{\mu+\xi} d \mu-\int_{0}^{-} K_{1}\left(\frac{R}{\mu}\right) I_{4}\left(\frac{R}{\mu}\right) \\
& \times \sum_{m_{0}^{a} \mu^{-2} \xi^{a-1-m}\left[1+(-1)^{a-2-m}\right] e^{-\mu^{2}} d \mu_{1}} \tag{33}
\end{align*}
$$

and
$E_{m}(\mathbb{E})$

$$
\begin{align*}
= & \xi^{\alpha} K_{0}\left(\frac{R}{\xi}\right) I_{1}\left(\frac{R}{\xi}\right)\left(\sqrt{\pi}-\xi \int_{0}^{\infty} \frac{e^{-\mu^{2}}}{\xi+\mu} d \mu\right)-\xi^{\alpha+1} \\
& \times \int_{0}^{\infty} \frac{K_{0}\left(R / \xi Y_{1}(R / \xi)-K_{0}(R / \mu) I_{1}(R / \mu)\right.}{\xi-\mu} \\
& \times e^{-\mu} d \mu+(-\xi)^{\sigma+1} \int_{0}^{\infty} K_{0}\left(\frac{R}{\mu}\right) I_{1}\left(\frac{R}{\mu}\right) \\
& \times \frac{e^{-\mu^{*}}}{\mu+\xi} d \mu-\int_{0}^{\infty} K_{0}\left(\frac{R}{\mu}\right) I_{1}\left(\frac{R}{\mu}\right) \\
& \times \sum_{m_{0}^{\alpha}}^{\alpha-1} \mu^{m \xi^{\alpha}-m}\left[1+(-1)^{\alpha-1-m}\right] e^{-\mu^{2}} d \mu \tag{34}
\end{align*}
$$

or can be readily generated from the recursion relations

$$
\begin{align*}
D_{a}(\xi)= & \xi^{2} D_{\alpha-2}(\xi) \\
& -2 \xi \int_{0}^{\infty} K_{1}\left(\frac{R}{\mu}\right) \Lambda_{1}\left(\frac{R}{\mu}\right) \mu^{\alpha-2} e^{-\mu^{2}} d \mu
\end{align*}
$$

and

$$
\begin{align*}
E_{a}(\xi)= & \xi^{2} E_{a-1}(\xi) \\
& -2 \xi \int_{0}^{-} K_{0}\left(\frac{R}{\mu}\right) I_{1}\left(\frac{R}{\mu}\right) \mu^{--I_{e}-\mu^{2}} d \mu \tag{36}
\end{align*}
$$

Starting values may be obtained from Eqs. (33) and (34). We now have $N+1$ unknowns $A_{f}, a=0,1, \ldots, N$ for the Poiseuille flow problem, and $B_{a}, a=0,1, \ldots, N$ for the thermal creep problem. Evaluating Eqs. (26) and (28) at N distinct values of $5[\{0, \infty)$ leads to a system of $N+1$ linear algebraic equations in each case:

$$
\begin{align*}
& \sum_{\alpha=0}^{N}\left(E_{\sigma}\left(\xi_{\beta}\right)+\xi_{A} \frac{I_{0}\left(R / \xi_{\beta}\right)}{I_{i}\left(R / \xi_{\beta}\right)} D_{a}\left(\xi_{\beta}\right)\right) A_{a}=\frac{\pi \xi}{2} \\
& \beta=1,2, \ldots, N_{1} \tag{37}
\end{align*}
$$

and

$$
\begin{equation*}
\sum_{a=0}^{N} S_{d} A_{e}=\frac{\pi R}{8} \tag{38}
\end{equation*}
$$

for the Poiseuille problem, and

$$
\begin{align*}
& \sum_{a=0}^{N}\left(E_{a}\left(\xi_{\theta}\right)+\xi_{a} \frac{I_{0}\left(R / \xi_{\beta}\right)}{I_{1}\left(R / \xi_{\beta}\right)} D_{a}\left(\xi_{\beta}\right)\right) B_{a}=\frac{\pi \xi}{4}, \\
& \beta=1,2, \ldots, N \tag{39}
\end{align*}
$$

and

$$
\begin{equation*}
\sum_{a=0}^{N} S_{\pi} B_{\sigma}=\frac{\pi R}{8} \tag{40}
\end{equation*}
$$

for the " $P T^{"}$ problem. It is important to note that because of the forms (24) and (25) for the F_{N} appioximation, the systems (37) and (38) and (39) and (40) are identical except for the right-hand sides. Thus, the solution of both sets is accompliahed with a single matrix inversion. These equations may then be solved straightforwardly to find the requirsd con$\operatorname{stants} A_{\sigma}, B_{z}, \alpha=0,1, \ldots, N$ and consequently yield explicit results for $\phi_{P}(R, \mu)$ and $Y(R, \mu)$ through Eqs. (24) and (25). These results may, in turn, be used to obtain flow rates and velocity profiles in terms of the expansion coefficients C_{0} and $C(\xi)$ or surface quantities only.

IV. MACROSCOPIC QUANTITIES

Using Eqs. (1), (2), and (8), the velocity profile for the Poiscuille problem may be expressed as

$$
\begin{equation*}
v_{P}(H)=\frac{2}{\pi} \int_{0}^{\infty} \phi_{P}(r, \mu) \frac{e^{-\mu^{*}}}{\mu^{2}} d \mu \tag{41}
\end{equation*}
$$

and the volumetric fow rate as

$$
\begin{equation*}
Q_{r}=\frac{4}{R^{3}} \int_{0}^{R} v_{r}(r) r d r \tag{42}
\end{equation*}
$$

If we define
$\phi_{a}(H)=\int_{0}^{\infty} \phi(r, \mu) \mu^{a} e^{-\mu^{\prime}} \frac{d \mu}{\mu^{2}}$
and take moments of Eq. (9), we find

$$
\begin{equation*}
Q_{r}=\left(\frac{R}{4}-\frac{1}{R}\right)+\frac{8}{\pi}\left(\frac{1}{R} \phi_{2}(R)-\left.\frac{2}{R^{2}} \frac{d \phi_{A}}{d r}\right|_{r=n}\right) \tag{44}
\end{equation*}
$$

which may be written as

$$
\begin{align*}
Q_{F}= & \frac{R}{4}-\frac{1}{R}+\frac{8}{\pi}\left(\frac{1}{R} \int_{0}^{\infty} \phi(R, \mu) e^{-\mu^{2}} d \mu\right. \\
& \left.+\frac{2}{R^{2}} \int_{0}^{\infty} \frac{K_{1}(R / \mu)}{K_{0}(R / \mu)} \phi(R, \mu) \mu e^{-\mu^{2}} d \mu\right) \tag{45}
\end{align*}
$$

after application of the boundary condition (12).
By a similar procedure we find

$$
\begin{align*}
Q_{T T}= & \frac{R}{4}-\frac{1}{2 R}+\frac{8}{\pi}\left(\frac{1}{R} \int_{0}^{\infty} Y(R, \mu) e^{-\mu^{3}} d \mu\right. \\
& +\frac{2}{R^{2}} \int_{0}^{\infty} \frac{K_{1}(R / \mu)}{K_{0}(R / \mu)} Y(R, \mu) e^{-\mu^{2}} d \mu \\
& \left.+\frac{\sqrt{\pi}}{R^{2}} \int_{0}^{\infty} \frac{K_{1}(R / \mu)}{K_{0}(R / \mu)} \mu^{5} e^{-\mu^{2}} d \mu\right) \tag{46}
\end{align*}
$$

Finally, we substitute the F_{N} approximations given by Eqs. (24) and (25) into Egs. (45) and (46) to express the fow rates simply in terms of surface quantities as

$$
\begin{align*}
Q_{P}= & \frac{R}{4}-\frac{1}{R}+\frac{8}{\pi} \sum_{a=0}^{N} A_{a} \\
& \times\left[\frac{1}{R} \int_{0}^{\infty} K_{0}\left(\frac{R}{\mu}\right) I_{1}\left(\frac{R}{\mu}\right) \mu^{\alpha+1} e^{-\mu^{2}} d \mu\right. \\
& \left.+\frac{2}{R^{2}} \int_{0}^{\infty} K_{1}\left(\frac{R}{\mu}\right) I_{3}\left(\frac{R}{\mu}\right) \mu^{\alpha+2} e^{-\mu^{2}} d \mu\right] \tag{47}
\end{align*}
$$

and
$Q_{F T}=\frac{R}{4}-\frac{2}{R}+\frac{8}{\pi} \sum_{a=0}^{N} B_{a}$

$$
\begin{align*}
& \times\left[\frac{1}{R} \int_{0}^{\infty} K_{0}\left(\frac{R}{\mu}\right) I_{1}\left(\frac{R}{\mu}\right) \mu^{\alpha+1} e^{-\mu^{2}} d \mu\right. \\
& \left.+\frac{2}{R^{2}} \int_{0}^{\infty} K_{1}\left(\frac{R}{\mu}\right) I_{1}\left(\frac{R}{\mu}\right) \mu^{\alpha+2} e^{-\mu^{2}} d \mu\right], \tag{48}
\end{align*}
$$

with

$$
\begin{equation*}
Q_{T}=Q_{F}-Q_{P T} \tag{49}
\end{equation*}
$$

We can also show straightforwardly that the velocities at the surface are given by

$$
\begin{align*}
v_{r}(R)= & \frac{2}{\pi} \sum_{a=0}^{N} A_{a} \int_{0}^{\infty} K_{0}\left(\frac{R}{\mu}\right) I_{1}\left(\frac{R}{\mu}\right) \\
& \times \mu^{a-1} e^{-\mu^{2}} d \mu \tag{50}
\end{align*}
$$

and

$$
\begin{align*}
v_{r r}(R)= & \frac{2}{\pi} \sum_{\alpha=0}^{N} B_{a} \int_{0}^{m} K_{0}\left(\frac{R}{\mu}\right) I_{1}\left(\frac{R}{\mu}\right) \\
& \times \mu^{\alpha-1} e^{-\mu^{z}} d \mu_{r} \tag{51}
\end{align*}
$$

where

$$
\begin{equation*}
v_{T}(R)=v_{F}(R)-v_{r r}(R) \tag{52}
\end{equation*}
$$

For a complete solution of the problem we need the functions $\phi_{p}(r, \mu)$ and $Y(r, \mu)$ for at r, and thus we proceed by establishing the expansion coeflicients $C(\xi)$ and C_{0}. Fullrange orthogonality ${ }^{1}$ may be used to obtain

$$
C(\xi)=\left[I_{o}(R / \xi) N(\xi)\right]^{-3}
$$

$$
x\left(\int_{0}^{-}[f(\xi, \mu)-f(\xi,-\mu)]\right.
$$

$$
\begin{equation*}
\left.\times \phi_{F}(R, \mu) \frac{e^{-\mu^{2}}}{\mu} d \mu-\frac{\pi \xi}{2}\right), \tag{53}
\end{equation*}
$$

where

$$
\begin{equation*}
N(\xi)=\xi e^{f^{2}}\left[\pi \lambda^{2}(\xi)+\pi^{2} \xi^{2} e^{-u^{\prime}}\right] . \tag{54}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{0}=\frac{3 \sqrt{\pi}}{2}+\frac{4}{\sqrt{\pi}} \int_{0}^{\infty} \phi_{p}(R, \mu) k^{-\mu^{2}} d \mu . \tag{55}
\end{equation*}
$$

Substituting the $F_{\mathcal{N}}$ approximation (24) into Eqs. (53) and (55) yields

$$
\begin{equation*}
C(\xi)=\left[I_{0}\left(\frac{R}{\xi}\right) N(\xi)\right]^{-1}\left(\sum_{a=0}^{N} A_{a} E_{a}(\xi)-\frac{\pi \xi}{2}\right) \tag{56}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{0}=\frac{3 \sqrt{\pi}}{2}+\frac{4}{\sqrt{\pi}} \sum_{a=0}^{N} A_{a} R_{a}, \tag{57}
\end{equation*}
$$

where

$$
\begin{equation*}
R_{\sigma}=\int_{0}^{\infty} K_{0}\left(\frac{R}{\mu}\right) I_{1}\left(\frac{R}{\mu}\right) \mu^{\alpha+1} e^{-\mu^{3}} d \mu \tag{58}
\end{equation*}
$$

The velocity profile $v_{P}(r)$ may be expressed in terms of the F_{N} coefficients. By substituting the general solution given by Eq. (16) into Eq. (41) we obtain

$$
\begin{align*}
v_{P}(r)= & 1\left(R^{2}-r^{2}\right) \\
& +\frac{C_{0}}{\sqrt{\pi}}+\frac{2}{\sqrt{\pi}} \int_{0}^{=} C\left(\xi \mu_{0}\left(\frac{r}{\xi}\right) d \xi-\frac{1}{2} .\right. \tag{59}
\end{align*}
$$

We similarly obtain $v_{r}(r)$ through

$$
\begin{align*}
v_{P T}(r)= & \frac{1}{4}\left(R^{2}-r^{2}\right)+\frac{C_{0}}{\sqrt{\pi}} \\
& +\frac{2}{\sqrt{\pi}} \int_{0}^{=} C(\xi) I_{0}\left(\frac{r}{\xi}\right) d \xi-\frac{1}{4}, \tag{60}
\end{align*}
$$

and Eq. (4).
Clearly, alternative expressions for $Q_{P}, Q_{T}, \nu_{P}(R)$, and $v_{T}(R)$ can be derived in this same manner and used as numerical checks for the previous expressions.

V. NUNERICAL RESULTS

For a given value of Δ we first choose a set of collocation points $\left\{\xi_{B}\right\}$ such that $0<\xi_{1}<\cdots<\xi_{N}<\infty$. We have found the positive zeros of the Hermite polynomials of degree $2 N$ to be an effective choice. We then compute the functions $D_{a}\left(\xi_{B}\right)$ and $E_{a}\left(\xi_{B}\right)$ from Eqs. (33) and (34) or Eqs. (35) and (36) and the function S_{0} from Eq. (32). To find the desired values of some of these integrals requires the use of 'Hospital's rule when $\xi=\mu$. Ferciger ${ }^{5}$ has suggested a

TABLE I. Convergence of the Poweuille flow rate $Q_{p}(\mathbb{R})$.

\boldsymbol{R}	4	8	12	16	Onder of the appronimation			26	28	30	Converged results	Ref. 8
0.0001	1.5038	1.5031									1.9018	\cdots
0.001	1.4995	1.4995									1.4995	1.5013
0.01	1.4760	1.4760									1.4760	1.4763
0.02	1.4597	1.4597	1.4598	1.4598							1.4598	1.460]
0.03	1.4474	1.4475	1.4475	1.4475	1.4475	1.4475	1.4475	1.4475	1.4476	1.4476	1.4476	1.4481
0.04	1.4375	1.4375	1.4376	J. 4376	1.4377	1.4377					1.4377	1.4384
0.05	1.4292	1.4293	1.4293	1.4294	1.4294	1.4293	1.4295				1.4295	1.4303
0.07	1.4159	1.416]	1.4162	1.4163	1.4164	1.4164	1.4165	1.4165			1.4165	1.4175
0.09	1.4057	1.4060	1.4062	1.4063	1.4064	1.4065	1.4065	1.4066	1.4066		1.4066	1.4077
0.1	1.4015	1.4018	1.4020	1.4022	J. 4024	1.4024	1.4025	1.4025	1.4026	1. 4026	1.4026	1.4037
0.3	1.3715	1.3730	1.3739	1.3744	1.3748	1.3750	1.3751	1.3752	1.3753	1.3754	1.3754	1.3759
0.5	1.3819	1.3442	1.3852	J. 3858	1.3862	1.3863	1.3864	1.3864			1.3864	1.3863
0.7	1.4066	1.4090	1.4099	t. 4103	1.4104	1.4103	1.4 j05				1.4105	1.4101
0.9	1.4384	1.4405	1.441]	1.4413	1.4413						1.4413	1.4408
1.0	1.4559	1.4577	1.4582	1.4583	1.438 .3						1.4583	1.4578
1.25	1.5027	1.5039	1.5041	1.5041							1.5041	1.5035
1.5	1.5524	1.5531	1.3532	1.5532							1.5532	1.5526
2.0	1.6574	1.6576	1.6576								1.6576	1.657]
2.5	1.7670	1.7671	1.7671	1.7672	1.7672	1.7672					1.7672	1.7667
3.0	1.879\%	1.8799	1.8799	1.8800	1.8800						1.8800	1.8796
3.5	1.9948	1.9949	I. 9949	1.9950	1.9950						1.9950	1.9948
4.0	2.1114	2.1115	2.1116	2.1116							21116	2.1117
5.0	2.3481	2.3482	2.3483	2.3483							2.3483	2.3493
6.0	2.5880	2.5881	2.5882	2.5882							2.588 .2	2.5906
7.0	2.83005	2.83017	283021	2.83022	283024	2.83024					2.8302	2.8 .346
9.0	3.31835	3.31847	3.31850	3.31851	3.31853	3.31853					3.3185	3.3291
10.0	3.56394	3.56405	3.56408	3.56409	3.56411	3.56411					3.5641	3.5791
100.0	26.0215	26.0216	26.0216								26.001	- \cdot -

TABLE II. Convergence of the thermal crecp fow rate $Q_{T}+\boldsymbol{R} /$

\boldsymbol{R}	4	Order of the epproximation							Converged		
		8	12	16	20	22	24	26	28	rexals	Ref. 8
0.0001	0.7515	0.7515								0.7515	\cdots
0.001	0.7466	0.7466								0.7466	0.7466
0.01	0.7177	0.7177								0.7177	0.7177
002	0.6956	0.6956		-						0.6956	0.6958
0.03	0.6777	0.6778	0.6778							0.6778	0.6780
0.04	0.6624	0.6624	0.6624	0.6625	0.6625					0.6625	0.6624
0.05	0.6488	0.6489	0.6489	0.6479	0.6489	0.6489	0.6490	0.6490		0.6490	0.6493
0.07	0.6253	0.6254	0.6253	0.6255	0.6256	0.6256				0.6236	0.6261
0.09	0.6054	0.6055	0.6056	0.6056	0.6057	0.6057	0.6058	0.6038		0.6088	0.6063
0.1	0.5964	0.5965	0.5966	0.5967	0.5967	0.5968	0.3968			0.5968	0.5973
0.3	0.4806	0.4812	D. 4815	0.4817	0.4819	0.4819	0.4820	0.4820	0.4821	0.4821	0.4123
0.5	0.4153	0.4162	0.4166	0.4168	0.4169	0.4169	0.4170	0.4170		0.4170	0.4169
0.7	0.3702	0.3709	0.3711	0.3712	0.3713	0.3713	0.3713			0.3713	0.3712
0.9	0.3357	0.3362	0.3363	0.3364	0.3364					0.3364	0.3363
1.0	0.3211	0.3216	0.3217	0.3217						0.3217	0.3216
1.25	0.2903	0.2906	0.2906	0.2906	0.2906	0.2906	0.2907	0.2907		0.2907	0.2906
1.5	0.2634	0.2655	0.2656	0.2656						0.2656	0.2655
2.0	0.2270	0.2271	0.2271							0.2271	0.2271
2.5	0.1986	0.1986	0.1986	0.1987	0.1987					0.1987	0.1987
3.0	0.1766	0.1766								0.1766	0.1767
3.5	0.1589	0.1590	0.1590							0.1590	0.1591
4.0	D. 1445	0.1445								0.1445	0.1447
5.0	0.1222	0.1222								0.1222	0.1224
6.0	0.1058	0.1088								0.1058	0.1060
7.0	0.09319	0.09321	0.09322	0.09322						0.09322	0.0934
9.0	0.07521	0.07522	0.07522	0.07522	0.07523	0.07523				0.07523	0.075
10.0	0.06956	0.06857	0,06858	0.06858						0.06858	0.0688
100.0	0.607581	0,007582	0.007583	0.007583						0.007583	...

TABLE III. Velocity alip at the wall

暑	Priseuilice thow $v_{r}\left(A^{\prime}\right)$	Thermid arecp flow - (f)
0.0001	0.5639 - 41	0.2417(-4)
0.001	0.5615 (-3)	0.2792-3)
0.1	0.3484 - 2)	0.26471-21
0.03	0.1594 ${ }^{\text {a }}$ - 1)	0.7340 (-2)
0.05	0.2597(-1)	0.1151(-1)
0.67	0.3570 - 1)	0.1531(-1)
0.1	0.4987 - 1)	0.2044-1)
0.5	0.2167	0.5957 - 11
1.0	0.4049	0.8032 - 1)
20	0.7659	0.9679 -1)
30	$0.1120(+1)$	0.1027
40	$0.1472(+1)$	0.1054
5.0	$0.1824(+1)$	0.1068
7.0	0.2529 + 11	0.1081
10.0	0.3587(+1$)$	0.1088
1000	$0.3541(+2)$	0.1094

method for evaluating S_{0} analytically. In the Appendix, we show how this can be extended to all S_{α} for even α. This annlyis was used successfully as a benchmark for testing the securacy of the numerical results obtained by Gaussian quadrature.

Next, the linear systems (37) and (38) and (39) and (40) are colved for the F_{N} coefficients A_{a} and $B_{a}, a=0,1, \ldots, N$, which are in turn used in Eqs. (47)-(52), (56), and (57) to yield the quantitics of interest.

In Table I and Table II the convergence rate of the F_{N} method it illustrated and the converged results for the flow rates $Q_{r}(R)$ and $Q_{J}(R)$ are compared to thoee of Loyalka, ${ }^{6}$ where R is the inverse Knudsen number. We consider the converged results to becorrect to ± 1 in the last digit shown. The streement with Loyalka" appears to be beat in the Knudsen number range $0.02<R<3.0$, Although our most sccurate results are achieved outside this range. Considered over the complete Knudsen number spectrum, the agreement rangen between three and five significant figures.

Table III contains values for the velocity alip at the wall for both Poiseuille flow and thermal creep flow. To our knowledge these results have not been previously reported. We believe the results to be correct to within ± 1 in the fourth aignificant figure.

Finally, in Table IV we compare our results for the velocity profles for $R=\mathbf{2}$ in both Poiseuille flow and thermal creep now to those of Loyalka. ${ }^{2}$ The degrec of agreement is quite similar to that found for the flow rates $Q_{\text {, }}$ and Q_{T}, except very close to the boundary where the agreernent drops to one significant ifgure. Again, we consider our results correct to the number of aignificant figures shown.

VI. CONCLUSIONS

The F_{N} method has been used successfully to solve the kinetic theory problems of Poiseuille flow and thermal creep tow in a cylindrical tube. The volumetric flow rates, velocity slip at the wall, and veiccity profiles have been computed to an accuracy of at least four significant figures with modest computational efort. Our numerical results spanning the entire range of the Knudsen number indicate that previous

TABLE IV. Velocify proflet for $\mathrm{R}=2$

Radios r	Poineville fowPrewt		Thermal creep fow	
	Prevert wort	Ref. 8	Prement wort	Ref. 8
0.000	2.3533	***	0.2970	**
0.004	2.3533	2.3531	0.2970	0.2970
0.026	2.3531	23529	0.2970	0.2970
0.070	2.3515	2.3516	0.2969	0.2969
0.135	2.3476	2.3474	0.2966	0.1966
0.219	2.3381	23381	0.2959	0.2959
0.321	2.5212	23210	0.2946	0.2946
0.437	2.2934	2.2932	0.2925	0.2925
0.567	2.2521	2.2522	0.2893	0.2893
0.706	2.1938	2.1958	0.2848	0.284
0.851	2.1220	2.1229	0.2788	$0.278 t$
1.000	2.0329	2.0328	0.2710	0.2710
1.149	1.9262	1.9261	0.2613	0.2613
1294	1. 0050	1.804	0.2495	0.2494
1.433	1.6710	1.6703	0.2354	0.2354
1.563	1.5273	1.5272	0.2190	0.2190
1.679	1.3806	1.3793	0.2006	0.2005
1.781	1.2326	1.2323	0.1800	0.1502
1.765	1.0915	1.0806	0.1585	0.1583
1.930	0.9624	0.9609	0.1364	0.1364
1.974	0.8550	0.8523	0.1160	0.1159
1.996	0.7845	0.7733	0.103]	0.0998

work by Cercignani ${ }^{3}$ and Loyalka" is accurate to within 1%. The present analyais can be used as a benchmark for testing the accuracy of the various numerical methods used previously for the BGK model and in verifying new techniques that might be developed in the future. We are optimistic about extending this work to solving higher order models and models that describe binary flows.

ACKNOWLEDCMENTS

This work was supported in part by the U.S. National Science Foundation under Grant CPE-8107473.

The authors would like to thank Profeasor C. Cercig. mani for suggesting this problem, and Professor S. K. Loyalk for helpful suggestions.

APPENDIX: ANALYTICAL EVALUATION OF EOUATION (32)

We have mentioned that the integral (32), which can be written as

$$
\begin{equation*}
S_{\mu}=\int_{0}^{\infty} K_{1}\left(\frac{R}{\mu}\right) I_{1}\left(\frac{R}{\mu}\right) \mu^{a} e^{-b \mu^{2}} d \mu, \quad b=1 \tag{A1}
\end{equation*}
$$

can be computed amalytically, and thus we now proceed to derive this alternative expression. It has been found that the integrals $S_{2 a}, \alpha=1,2,3, \ldots$ can be generated by taking the partial derivatives of S_{0} with respect to b, through the formula

$$
\begin{equation*}
S_{2 a}=\left.(-1)^{c} \frac{\partial^{a} S_{0}(R)}{\partial b^{=}}\right|_{b-1}, \alpha=1,2, \ldots \tag{A}
\end{equation*}
$$

To initiate our calculations we use

$$
S_{0}(R)=R \int_{0}^{\infty} X_{1}\left(\frac{1}{t}\right) I_{1}\left(\frac{1}{t}\right) e^{-w^{2} R^{\prime}} d t
$$

where $t=\mu / R$. A method of evaluating this integral has
been pointed out by Ferziger, ${ }^{3}$ who gave a three-term asymptotic expansion. We have found the complete reault to be given by

$$
\begin{align*}
S_{0}(b)= & \frac{\sqrt{\pi}}{4 \sqrt{b}}-\frac{2}{3} R \\
& -\frac{\sqrt{\pi} R^{2}}{8}\left(\ln b+2 \ln R+3 \gamma-\frac{5}{2}\right) \sqrt{b} \\
& -\frac{1}{4} \sum_{n=1}^{\infty} \frac{(-1)^{n} R^{2 n+1} b^{n}}{(n+3)(n+1)^{2}((n-2)!)^{3}} \\
& -\frac{\sqrt{\pi}}{4} \sum_{n=1}^{\infty} \frac{(-1)^{n} R^{2 n+2} b^{n+1}}{(n+2)(n+1)^{2}(n!)^{3}} \\
& \times\left(\ln b+2 \ln R+3 \gamma-\frac{2}{n+1}\right. \\
& \left.-\frac{1}{n+2}-3 \sum_{k=1}^{m} \frac{1}{k}\right) . \tag{A4}
\end{align*}
$$

By metting $b=1$ we have $S_{0,}$, and the use of Eq. (A2) yields analytical expressions for the higher-order functions $S_{2 a}$, $a=1,2, \ldots$ The computed exact results of $S_{a}, \alpha=2,4, \ldots$, 30, were compared with numerical results obtained directly through a 400 point Gaussian quadrature scheme and agreement was achieved for 9 to 14 sigrificant figures. Based on this success, we used only the numerical method for odd values of a.
${ }^{1} \mathrm{C}$ Cercignant, Anc. Phyz 20, 219 (1962)
${ }^{3}$ C. Cercipmeni, 3 . Math Annl. Appl. 12, 254 (1965).
${ }^{1}$ C. Cercignani and P. Sorapiona, Phys. Fuids 9, 40 (1966).
${ }^{\circ}$ C. Cercigani and C. D. Papari, Rarefed Gar Dynamics, edited by C Brundin (Academic, New York, 1967, p. 535.
JJ. H. Faxigr, Phy. Fuide 10, 1448 (1967).
S. K. Loylla, Phyt. Fluide 12, 2301 (1969).
${ }^{7} \mathbf{Y}$. Sooce nod K. Yumamoto, Phyn. Fuids 11, 1672 (1968),
IS. K. Loyilkh, I. Chero. Phys. 63, 4054 (1975).
'P. E. Suctin, B. T. Pordhov, V. G. Chergiak, and S. F. Borisov, I. Fluad Mech 60,511 (1973)
${ }^{2}$ B. T. Pordnov, P. E. Suetin, S. F. Borisov, and M. Y. Nevolin, Ivv. Yusow. Phyn 14, 150 (1972).
'S. F. Borinov, 8. T. Pordnov, and P. E. Suetin, J. Tech. Phys. 42, 1310 (1972).
${ }^{32}$ S. K. Loyalka and T. S. Storvick, J. Chem. Fbys. 71, 339 (1979).
${ }^{15}$ S. K. Loyalke, T.S. Storvick, and S. S. Lo. J. Cbem Phys 76, 4157(1982)
${ }^{14}$ S. S. La, S. K. Loyalke, and T. S. Storvick, J. Chem. Phyt. 71, 2439 (1984)
${ }^{1}$ 'S. K. Loyilk, N. Petrellis, and T. S. Storvick, Z. Aggew. Math. Pbys. 30 , 514 (1979)
${ }^{46}$ C. E Siewert, R. D. M. Gercin, and P. Grandjan, J. Math. Phys. 21, 2760 (1980).
${ }^{11} \mathrm{C}$ E. Siewert and P. Bencion, Nucl Sci. Eng. ©5. $156(1979)$
${ }^{19}$ J. K. Buckner and J. H. Ferriger, Phyt. Fluida 9, 2315 (9966).
's. K. Loyalke und J. H. Feriger, Phyn Fhuide 10, 1833 (1967)
${ }^{\omega}$ J. R. Thoonse Jr_{7} J. D. Souther, and C. E. Siewert, Nocl. Sci. Eng. M, 79 (1913).
${ }^{21} \mathrm{C}$ E E Simert and J. R. Thomat, Jr., Nuel. Sei. Exy. 04, 285 (1983)
${ }^{22} \mathrm{C}$. E sivwert and J. R. Thomest, Jr, Npel. Sci Eny. 87, 107 (1984)
${ }^{2}$ Hoadbock of Mathematicol Functions, AMS-55, adited by 4 Abramomice ant I. A. Stegun (U.S. National Burenv of Stapdench, Webingtom $\mathrm{DC}, 1964$, p. 375 .

