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ABSTRACT

The Fy method is used to solve the much-studied problem of heat
transfer in a rarefied gas between two parallel plates. The objective
is to demonstrate the efficiency of this method for providing solutions
of benchmark accuracy to kinetic theory problems in finite media, so
that it may be applied with confidence to problems for which more exact
methods of analysis do not appear possible.

Singular integral equations for the distribution function are
derived and solved by polynomial expansion and collocation. The total
heat flux, temperature and density profiles, and the molecular
distribution function at various locations between the plates are all

computed to high accuracy with relatively low-order approximations.

I. Introduction

1

In the previous paper™ the present authors reported application of

the Fy method to  two half-space problems of kinetic theory. Very
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accurate results were reported based on a relatively simple approxima-
tion. In this paper we turn to a problem in a finite medium, that of
heat transfer in a gas confined between parallel plates. Our purpose
here is to test the Fy method for finite geometry, since in other fields
of application of this method, finite geometries have required different
forms for the approximate solution. We have chosen a problem which has
previously been so1ved2'3 by relatively exact methods in order to have a
basis of comparison. Our ultimate objective is to solve problems not
amenable to such exact treatment but it is important to first develop a
background of experience to provide guidelines in such applications and
to aid in judging the accuracy to expect of the method.

In Refs. 2 and 3 Thomas et al. formulated this problem and used the

method of elementary so'lutions4

and half-range orthogonality to provide
a solution of benchmark accuracy. We will refer to these papers for the
problem formulation and notation. In the present work we rely on the
much more tractable full-range orthogonality to develop our approximate
solution. It is this reliance on full-range orthogonality alone which
makes the F, method promising for application to more difficult
problems.
Referring to Thomas et a1.2’3, we seek the solution of

- 2
b3 v+ ¥Ge) =g [ Q) Mxu) e P de. (1)
R -
which satisfies the boundary conditions
¥0,p) = (1~ a) ¥O, - w), >0, (2)

and
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2
6, - w) o= (1 - a) W, +aym |PT B, w0 (3)
1
Here ¥(x,p) is a 2-vector related to perturbations in the density and

temperature of the gas3:

@ | 2 T 2
mix) =& {“ - ”2} wx,m) e ¥ du, (4)
- 1

and

-

1 21117 2
M(x) == [ [ ] ¥x,p) e ¥ odu. (5)
0 .

We use the superscript T or tilde to denote the transpose operation.

Similarly, the normalized heat flux q is related to ¥ (x,u) 1:hr'ough3

q;Q B B oy e || * \E[xu)ue_uzdu. (6)
a?m 1 v

In Eq. (1), Q(p) is a 2 x 2 matrix of polynomials given explicitly

3

elsewhere”, whereas B in Eq. (3) is a constant to be determined by the

condition of mass conservation at the boundary:

1" = o2
[ "x,p) pe” ¥ odp=o0. (7)
0 -
The boundary conditions (2) and (3) are the Maxwell diffuse-specular
conditions with % and oy the accommodation coefficients at the Tleft
(x=0) and right (x=6) surfaces, respectively. In Eq. (6), Q represents
the actual heat flux, and Qg the free-molecular heat flux.

The general solution of this problem ish



500 VALOUGEORGIS AND THOMAS

2 4 2 ®
Wx,w) =2 A @ (W + A ¥(x,u+ I A (n) @ {n,nle” ¥ Ndy .
oy C\'.:]. o~ CI'.=3 o ~0 l'.l':l _i X 0

(8)
I11. BASIC ANALYSIS

4

Using full-range orthogonality’, we derive the singular integral

equations

-] 2 @ 2
/ Ka{ W Ys,upe™ du - f K w) - 8 sz(u] 190, pe™ du =0, (9)
® _ .2 @ 2
J KW ssndue” ¥ du - [ K (0, uhe” ¥ du=0,  (10)
- B 5/ 2
[ X w0, u)pe™ du - e X 0 es,p)pe™ dp = 0, (11)

and

@ 2 = 2
[ L Lm0, u)pe™ du - eI L (n g6, ™ du =0, (12)

for a=1,2. Here X (u), Eal n,1) are the full-range adjoint vectors
given explicitly by Kriese et a1.4

We now introduce the approximations

N
Yo,-u) = = AW, >0, (13)
n=0
and
N n
¥o,w = = B ow, w>0 . (14)

=0
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Substituting these approximations into Eqs. {9-12) and utilizing the

boundary conditions (2), (3), we find the equations

@ N n+l _”_2
IO [(1 - )X (-n,0) = X (n,0)] nfo A, wTeH dp
@ » . N 2
+ e 8/ 10[[1 = ap)f (nw) = K (=m0 ] n=zol’3"“ L T
2
@ p + B 2
= - ::(2:’? e-élq / za(n,p) pe ®dy, a= 1,23 (15)
0 1
({[(1 - a))X () - & (-n,0) ] nfo A, nl - dp
@ N
+ eb!ng [(1 - azlza(-n,u] - Za{n,u]] nfo B, ntlo-ny

@ 2
= = qzliealn [ Y{—n,p][u +B] ue'” dp, a«=1,2; (16)
0o~ 1

@ N
U2 = aT + 8 L(w] T A, e

N

@ 2
- J(2-a¥w B W™l Fdu
o] n=o

@ 258l P
=ay /% [ K| et du,  a= 1,2 (17)
0 1

and

~ n+l -l ~
o ({ X (n nz A, v e " du+ azéf X (w

=

2
ntl _-p
B p e " du
"=0,...r|

> 2,8] .2
= /% [ X (w “1 we™ dy, a= 3,4, (18)
0
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When the eigenvectors X (u) and X (n,u) are introduced explicitly into
Eqs. (12-15), it is found that all integrals can be reduced to combina-

tions of the basic integral

2
=~ &
d
J’ e~ dp

b (19)

I{E) =

0

which we evaluate numerically using Gaussian quadrature. Since each of
the coefficients gﬂ and Qﬂ have two components, we have a total of 4N +
4 unknowns; evaluating Eqs. (15) and (16) at N discrete values
of £ ¢ (0,=) leads to a system of 4N + 4 linear algebraic equations when
Eqs. (17) and (18) are included. These equations are too Tengthy to

repeat here and are given explicitly e15ewhere5.

The condition of mass
conservation (7) can be used to express the constant B of Eq. (3) in

terms of the unknown FN coefficients gﬂ:
N @ 2
B=-1+—g[] E un+le'“du. (20)

Once the system of linear equations is solved, the heat flux and the
temperature and density profiles can readily be determined. Inserting

the general solution (8) into Eq. (6) yields

a, + a, - aa
q=-“"—"_1a1§2 2 273 A ()
where
® & ntl - p.a
Ay = [ Xlw) ©O0,u) w'e T Fdu, (22)

which can be evaluated in terms of the Fy coefficients as
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o

Ay ==-a [
3 1a

229
=

2
3[u} T A pn+le_p dp . (23)
n=o

The temperature and density profiles may similarly be expressed8 as

e 2
) = VE (A - a0 + L A me™ e A (e ] e,
(4]
(24)

and

o 2
1 1 -x/ x/ -
M(x) == (A, - Ayx) + = af[ Ay(n)e R A (-me” T ] e dn,

(25)

where the A, and A (n) can be determined through expressions analogous

to Eq. (22).

III. Position-Dependent Quantities

We prefer to use a different approachGJ which gives the temper-
ature and density profiles directly through Eqs. (4) and (5), as well as
the molecular distribution function.

Through a procedure analogous to that used in deriving Eqs. (9-12),
we find for any x in [0,8]

@ 2 @ 2
S &, (n,w¥(0,u)ue™ dp - /g K nwex,upe™ du =0, (26)

@ 2 o 2
J R L-n,0) %0, p)pe™" du - e/ J X L-nm ¥ x,wpe™ du =0, (27)

- 2 © 2
{w K WY x,p)pe " du - {a[ga{ MRS PN J#0, ) pe™ du = 0, (28)
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for a =1, 2, and

@ 2 @ 2
[ R wgx,mue™ dp - [ K (WO, u) e du =0, (29)

for a= 3, 4. We approximate ¥(0,u) as in Eq. (13), and use

N
¥x,p) = £ F_(x) M, ow>o0, (30)
m=0

and

N
¥(x,-p) = £ G (x) um, w>0, (31)
m=0 "

in Eqs. (26-29) to obtain the equations

N © 2
” 1 -
2 Lln- 0 ™ duF (x)
m=0 0 -
N © 2
i 1 -
-2 ¥ Anw d™e ™™ dy g (x)
m=o o0 © ~m
x/n V% o ml - 2
= e £ I - o)X (n=p) = K (n,0) ] €™ ¥ du A, (32)
m=o0 0
N ® 2
- Y =
£ R (nw) ™leH duF (x)
m=0 o0 * B
N o i
i =
-z [ Lln-p) M re M dp g (x)
mo o © ~a
. xm N & e m1 -
= - L / [“'“1}5.5;("1’9} - ~a(n’"“}]”' et dp A, (33)
m=0 0
N © 2
ml -p
mfo gzu(p)u e % du [Em(x) + §m[x}]
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@

2
[ [te - al]za[ 7Y o gcﬂ?(“)] J.trm-le'.'l dp A (34)
0

M =

m=0

for a =1, 2, and

1 fnf (p) pw+le_“2du [F (x) - 6.(x)]
mo o ~n =9

N

= %

@ ' 2
1 =
=y D[R W W e du Ay, (35)

m=0
for a = 3, 4.

The integrals involved in Egs. (32-35) may be reduced to exactly
those appearing in Eqs. (15-18), so that no new quantities have to be
computed. We evaluate Eqs. (32) and (33) at N values of n € (0, =) to
achieve, along with Eqs. (33) and (34), a total of 4N + 4 equations for
the 4N + 4 unknowns Em(x] and gm(xl. This system of equations is then
solved for F(x) and Gy(x) at each value of x of interest. With these
quantities known, the temperature and density profiles and the heat flux
follow immediately from Egs. (4-6), and (30}, (31). The matrix of
coefficients in Eqs. (32-35) is independent of x, so that the solution
for all x can be accomplished with only one matrix inversion.

This approach allows us to calculate in addition the "reduced"
distribution function

o

Fix,g) & /] fix,2) dejde,, (36)

where f(x,E) is the molecular distribution function at location x and

velocity g = (51,52,53]. We find
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Fix,E,) U T i (x,5)] Gl (37)
s = + o ¥(x,E e " 37
L (211RT1]I;2 /=T, lo) T 1

where

IV. Numerical Results

In order to solve for the coefficients in the Fy expansion, we must
first choose a set of collocation points {nj} e [0,2), j = 0,1,...N, at
which to evaluate Eqs. (15-18) and (32-35). 1In obtaining the numerical
results to follow, we used the positive zeros of the Hermite polynomials
of degree 2N.

In Table 1 we illustrate the convergence of the FN method by
tabulating values of the heat flux q as computed from Eqs. (6) or (21)
vs. the order of approximation N. We also show the "exact" results
based on half-range ana]ysiss. It s seen that a Tlow-order
approximation gives results correct to five or six significant figures
for inverse Knudsen numbers & < 0.01 and 6> 0.10. For 0.01 < 6 < 1.0,
four significant figures seem to be the limit for simple polynomial
approximations of the form shown in Eqs. (13) and (14).

We tabulate converged values of the heat flux by comparison to Ref.
3 in Table II for several different values of the accommodation
coefficients, and for & = 5.0. Five-significant-figure accuracy was
obtained for all values of « tested.

Temperature and density profiles are shown in Tables III and IV, as
computed from Eqs. (4) and (5) using the x-dependent approximations of

Eqs. (30) and (31) for representative values of a and &. For most
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Table II. Normalized Heat Flux for § = 5.0.

@y a, Fou Exact [3]
0.7 0.9 0.384792 0.384790
0.7 0.7 0.428231 0.428228
0.7 0.5 0.492920 0.492918
0.7 0.3 0.599062 0.599058
0.7 0.1 0.804266 0.804263
1.0 0.9 0.313373 0.313371
1.0 0.8 0.338420 0.338418
1.0 0.7 0.368048 0.368046
1.0 0.6 0.403647 0.403645
1.0 0.5 0.447229 0.447227

Table III. Density and Temperature Profiles for

6 = 2.0, a; = 0.7, a, = 0.3

Temperature Density
X Foy Exact Foy Exact
0.0 0.162708 0.162708 -0.077030 -0.077013
0.1 0.201816 0.201815 -0.112758 -0.112759
0.2 0.230009 0.230008 -0.138712 -0.138712
0.3 0.255699 0.255698 -0.162572 -0.162571
0.4 0.280355 0.280354 -0.185587 -0.185586
0.5 0.304688 0.304687 -0.208338 -0.208337
0.6 0.329226 0.329224 -0.231246 -0.231245
0.7 0.354539 0.354537 -0.254767 -0.254767
0.8 0.381505 0.381502 -0.279627 ~-0.279626
0.9 0.412078 0.412076 -0.307500 -0.307498
1.0 0.457969 0.457966 -0.349100 -0.349189
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N
Table IV. Density and Temperature Profiles for
5 = 5.0, @ = 1.0, @, = 0.5
Temperature Density

X F24 Exact FZA Exact
0.0 0.086631 0.086636 -0.040202 -0.040212
0.1 0.162129 0.162130 -0.111004 -0.111008
0.2 0.220969 0.220970 -0.167637 -0.167640
0.3 0.276591 0.276591 -0.221814 -0.221817
0.4 0.330985 0.330985 -0.275087 -0.275089
0.5 0.385032 0.385032 -0.328106 -0.328108
0.6 1.439368 0.439367 -0.381329 -0.381331
0.7 0.494712 0.494711 -0.435279 -0.435280
0.8 0.552291 0.552289 -0.490869 -0.490870
0.9 0.615159 0.615156 -0.550494 -0.550497
1.0 0.705115 0.705149 -0.633270 -0.633331

cases five or six significant figures are correct. These profiles were
computed in two different ways: through Eqs. (24) and {25) with the
expansion coefficients A , « = 1,...,4 and Aa(”]’ a= 1,2 computed from
the Fy coefficients as in Eq. (23), and directly through Eqgs. (4) and
(5) using the x-dependent FN solutions for the expansion coefficients
given by Eqs. (30) and (31). Agreement to at least 5 significant
figures was obtained between these two different methods. A similar
comparision for two different computations of the heat flux through Egs.
(21) and (23), or Eq. (6) using Eqs. (30) and (31) yielded agreement up

to 10 significant figures.
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Finally, in Fig. I we show the reduced distribution function of Eq.
(37) at x=0 and x=6. We also show the local Maxwellian distribution at
the same locations for comparison. Although the increased departure
from equilibrium at the right boundary x = & is evident, the
perturbation in the distribution function is still small enough to
justify a linear analysis. The distribution function can only be

obtained through the position-dependent approximations (30) and (31).

Conclusions

We have demonstrated that the Fy method is a viable solution
technique for kinetic theory problems in finite media, yielding results
of benchmark accuracy for the full Knudsen number range of interest.
However, for media of thickness 0.01 to 1.0 mean-free-paths the accuracy
does fall to four significant figures. In addition, we have shown that
it is possible to compute space-dependent quantities to high accuracy,
including the molecular distribution function itself. Study of the
distribution function can often be very useful in understanding the
physics of more complex kinetic theory problems, such as those involving
condensation-evaporation processesg. The method should be quite useful

in solving problems for which exact analysis is not possible.
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