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< ABSTRACT

The recently developed Fy-method is used to solve two half-space
problems of kinetic theory: heat transfer and weak evaporation. A
relatively low-order approximation gives results accurate to 6 signi-

ficant figures.
I. INTRODUCTION

The Fy-method was first introduced by Siewert and Benoist! and
Grandjean and Siewert2 in the context of neutron transport theory. This
method proved to be quite accurate even for low-order approximationsz
and thus has been extensively developed in the fields of neutron
transport theory and radiative transfer. Both mu1t{—reginn3*4 and

5,6,7

multigroup problems have been solved, although the multi-group

problems have been l1imited to down-scattering only. The only applica-

tions in kinetic theory have been to the problems of plane Poiseuille
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9,10 10

ﬂch and strong evaporation . 0f these, only one involved the

fully coupled kinetic equations which arise from the linear BGK model
equation for a gas with three degrees of freedom. A method utilizing

polynomial expansions of unknown surface distributions, in the spirit of

the FN method, was used by Buckner and Ferzi_qer11

Ferz‘lger‘lz.

and Loyalka and

It is the purpose of the present work to demonstrate the general
method of formulation of the Fy-method for fully-coupled kinetic equa-
tions by solving two half-space problems: heat transfer and weak
evaporation. Although the general method of formulation is quite
similar from problem to problem, the choice of approximation is somewhat
problem-dependent. As experience with the FN method accumulates general
guidelines are beginning to emerge; however one still must systemati-
cally test each candidate for a particular problem. In this paper we
concentrate on half-space problems, and develop an effective approxima-
tion which we think will be useful for other half-space problems in
kinetic theory.

The two problems we wish to consider have been formulated and
solved by the method of elementary solutions by Siewert and ThomaslS,
correcting the Wiener-Hopf results of Pao”. Following that
formulation, we seek solutions of the coupled equations

b2+ ¥, =1EQ(“] [ ex, w dexpl-p' Ddy , (1)

-0

where ¥(x,u) is a 2-vector whose components are related to perturbations

in the gas density and temperature according to

T ]
N(x) = /2 [é] J g(x,n]exp(-uzldp i (2)
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and

2.1
T(x) = 212 § L 2] gxowexpt-wDdu (3)

Here Q(u) is a matrix of po1ynomia]sl3, and the superscript tilde
denotes the transpose operation.
For the evaporation problem, the appropriate boundary conditions

arel3

E(U,H]=—%U‘H[é],u>0, {4)-

and

Tim dN(x) _ 1im dT(x) _ , (5)
X+2 dx  X¥= dX 2

where U is the downstream mass velocity.
For the heat transfer problem, we seek the solution of Eq. (1)
satisfying

¥0,p) =0, w>0, (6)

and

1im dT(x) _ _ Tim dN(x) _
x+e " dx X+ dx

1 (7)

After deriving the elementary solutions Qa(u). Xa(x,u), and gu(n,u},
Kriese, Chang, and Siewertls have given the general solution of Eq. (1)

in the form

2 4
¥x,u) = afl A, 2w+ aES A, Zlx,0)

2 L=+
+ [ An)g (n,u)exp(-x/n)dn , (8)
=l -



488 THOMAS AND VALOUGEORGIS

where the Aa and Aa(”] are arbitrary coefficients to be determined by
the boundary conditions of the respective problems. For the evaporation
problem, it can easily be determined that ¥(x,u) will satisfy the condi-
tions of Eq. (5) if we take A3 = Ay = 0, and Aa(“} =0, n<0, a=1,2,

Evaluating the resulting solution at x=0, we have

2 2 =
¥o,u) = I A, ga[p-) + £ f Aa( n)%a{ﬂ;u]dﬂ . (9)
=1 =1 0

I1. Analysis

Using the full-range orthogonality relations of Kriese, Chang and

Siewertls, we obtain the singular integral equations

@ ? )
/ ga(u)glﬁ,u}u e ¥ dp=0, p=3,4, (10)

and

2
| Rgl-n,m g0, )p ™ du = 0, p=1,2. (11)

The vectors Ka{u) and ﬁﬁ{n,p} are given explicitly in Reference 15.
Since ¥0,p) is known only for p > 0 from the boundary condition

(4), we introduce the approximation

N

1

¥0,-p) = Q(uw[C. + = C —5=], u>0 (12)
£ 2 = ava-!-p’ ’

where Q(p) is the same polynomial matrix used in Eq. (1), En are 2-
vectors to be determined, and the Vo 0 < B < =, are chosen to maximize
computational efficiency. It is seen that an approximation of order N
involves N+1 unknown vectors Qu, for a total of 2N+2 unknowns. Substi-

tuting the approximation (12) and the boundary condition (4) into Egs.
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(10) and (11) yields the equations

; T
? N
~1/2 5 _
x Gzl St B BG 7 0
¥ o
2,1/2
-(2) N
-172 |73 _ 5 _ sy
X 6 §*0+a51 E~2{vu}§-a__n .

and
N T
Relmgg + = Rglnuvg)g, = - 3] Zstn, =12
Here
Blvg) = S Q) g pl-mie™ S
@ e
Rgln) = fﬂ Qw) Xgl=n,=p)ue ¥ du,
7 & —ts? du
Rglm,vy) = IO gl w Xgl="s-1) e il
and

Sl = [ Agl-nai wZdp

for B =1 and 2.
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(13)

(14)

(15)

(16)
(17)

(18)

(19)

The integrals in Eqs. {16-19) can all be reduced to combinations of

the basic integral

. e 4
I(g) = IO W
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however, the details are rather tedious and are given eTsewherelE. Eqg.

(15) evaluated at N values of =N along with Eqs. (13) and (14) yield
a system of N + 2 algebraic equations for the Qa, a=0,...,N, which
can be solved straightforwardly using standard methods. Once these
coefficients are computed, the expansion coefficients Aa, Aa( n), e=1,2

used in Eq. (9) are available from the aforementioned full-range

orthogonalitylsz
Ay = J K (wuo,wu exp(-ud)dp, a= 1,2, (20
and _ )
AL = f ga(n,u),ﬁ!j{l),u)u exp(—pzldp ,a=1,2, (21)

This leads immediately to values of the density and temperature profiles
through11

1/2A1 + nl/2 Jo Al{n}exp{—nz - x/n)dn , (22)

T(x) = =n(2/3)
and

Nx) = A, + w2 [ A (ndexp(=n? - x/n)dn . (23)
0

The other quantities of interest are the macroscopic density and temper-

ature jumps, c; and dy, and the microscopic density and temperature

jumps, ] and 61, respectively, defined by14

1]
n

Tim N(x) = -2c, , Tim T{x)

X+ X

N(0) _ZUT!, g T(0)

-2, ,

—2U61 d (24)

For the heat-transfer problem, the boundary conditions (7) require
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N
CREE D - @
A =i, (25b)
and Aa(n) =0, n<0, . {25¢)

For this case, full-range orthogonality applied to the general solution

(9) and incorporating Eq. (25c) yields the singular integral equations

® 2
[ Zglwyo,u)u e ¥ du=A

Bl ﬁ= 3’4’ {26)
and

® 2
J gst—n,u)yo,me Wdu=0, p=1,2 (21)

We now approximate ¥(0,-u) in the form

' 1/2
- [%) N 1

¥0,-p) = Qlu)g, - £ [ 1 +“§1g“—ﬂlj. (28)

Inserting this approximation along with the boundary condition (6) into

Eqs. (26) and (27), we find the equations

a7
7
-1/2| 2 N _ 5 (3,1/2
c + = P (v) = . (29)
% 3,1/2 - L R ﬁ[‘z)
-8
2\1721 7
2172 |-G N 5
% [ 6 } £0+a51 Polv)C, = = 5= (30)

and



492 THOMAS AND VALOUGEORGIS

_(3]1)'2
Ry(me, Rolnve), = I R -n-wgwilexpl-wddu | 2|,

+
gIIMZ

1

p=1,2.
(31)

We note that these equations differ from Eqs. (13-15) only on their
respective right-hand sides.

The numerical procedure is the same as for the evaporation
problem. The resulting expressions for the density and temperature

profiles now arel3

NGO =y - x + 22 [ a(nlexp(-n? - x/m)dn , (32)
0
and
T = ®DYE A ¢ x e 28 a(mexp(an® - x/men. (33)
14

The macroscopic density and temperature jumps ™ may be determined from

these equations according to

Tim [N(x) + x] = -c,, Vim [T(x) - x] = d, ,

K+ X+

N(O) = -v,, T(0) = 85, .

(34)

III. Numerical Results

We chose the Vs @ 1,2,...,N, in the Fy-approximations, Egs.
(12) and (28), to be the N positive zeros of the Hermite polynomial of
degree 2N. The Tlinear algebraic equations (13-15) for the evaporation
problem, and (29-31) for the heat transfer problem were then solved by

standard techniques. Since the resulting temperature and density
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Table I, Evaporation Problem

493

Temperature Density
N x=0, 61 X+wm, dl x=0, Y, X+o, ¢,
2 0.204629 0.223222 0.661150 0.842701
4 0.204798 0.223374 0.661082 0.842620
6 0.204800 0.223379 0.661099 0.842628
8 0.204797 0.223378 0.661109 0.842633
10 0.204795 0.223377 0.661116 0.842637
12 0.204794 0.223377 0.661118 0.842638
14 0.204793 0.223376 0.661120 0.842640
16 0.204792 0.223376 0.661122 0.842641
18 0.204791 0.223376 0.661124 0.842642
20 0.204791 0.223376 0.661125 0.842642
22 0.204791 0.223375 0.661125 0.842642
24 0.204791 0.223376 0.661126 0.842642
26 0.204791 0.223376 0.661126 0.842643
28 0.204790 0.223375 0.661127 0.842643
30 0.204790 0.223375 0.661128 0.842644
Converged
Results 0.204790 0.223375 0.661128 0.842644
Exact!’ 0.204789 0.223375 0.661130 0.842645
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Table II. Heat Transfer Problenm

Temperature Density
N x=0, 8, xs@, d, x=0, Yy x>, c,
2 0.850307 1.30011 0.393898 0.742053
4 0.853215 1.30249 0.396276 0.744059
6 0.853428 1.30266 0.396470 0.744214
8 0.853471 1.30269 0.396515 0.744246
10 0.853503 1.30271 0.396583 0.744286
12 0.853499 1.30270 0.396569 0.744279
14 0.853503 1.30270 0.396569 0.744278
16 0.853505 1.30271 0.396568 0.744277
18 0.853506 1.30271 0.396568 0.744278
20 0.853507 1.30271 0.396569 0.744278
22 0.843409 1.30271 0.396569 0.744278
24 0.853507 1.30271 0.396570 0.744277
26 0.853511 1.30271 0.3?65?0 0.744279
28 0.853513 1.30272 0.396571 0.744279
30 0.853512 1.30272 0.396570 0.744278
Converged
Results 0.853513 1.30272 0.396571 0.744279
Exact!? 0853515 1.30272 0.396572 0.744279
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profiles agreed with the exact resu1t513 to six significant figures
for N < 30, we chose not to tabulate them here.

The rate of convergence of the Fy method for these problems is
evident in Tables I and II, where we present computed values of the
various slip coefficients, by taking U = %, as the Fy order is
increased. In general, convergence is faster for quantities evaluated
at x»= (e.q. C1s dl, Co, and d2} than for quantities evaluated
at x=0 (&

[ ). This is expected since in the limit of large x

1* Yi* P20 V2
the integral terms disappear in Eqs. (22,23) and (32,33).

IV. Conclusions

The EhOSen Fy approximation for the fully coupled kinetic equations
produces excellent results for modest computational effort; 6-figure
accuracy js achieved for 20 < N < 30, and 4 figures for N < 10. Based
on this success, we next intend to investigate problems in finite media,
such as parallel-plates heat transfer and evaporation. Our goal is to
be able to solve problems for which exact analysis in unavailable, such

as heat transfer and evaporation in binary mixtures.
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